Probabilistic Graphical Models in Computer Vision (IN2329)

Csaba Domokos
Summer Semester 2017
5. Move making algorithms

- Orphan $(\bigcirc \bigcirc)$: the nodes such that the edges linking them to their parents are no longer valid (i.e. they are saturated)
- By removing them the search trees S and T may be split into forests

We are trying to find a new valid parent for p among its neighbors, such that a new parent should belong to the same set, S or T, as the orphan

IN2329 - Probabilistic Graphical Models in Computer Vision

- The Boykov-Kolmogorov algorithm is also an augmented path-based method with worst case complexity $\mathcal{O}\left(|\mathcal{E}| \cdot|\mathcal{V}|^{2} \cdot|C|\right)$, where $|C|$ is the capacity of the minimum cut.
- This complexity is worse than complexities of Edmonds-Karp algorithm, however, this algorithm significantly ($\sim 2-10 \times$) outperforms standard algorithms on typical problem instances in vision

Let us consider a function f of two binary variables, then f is called regular, if it satisfies the following inequality

$$
f(0,0)+f(1,1) \leqslant f(0,1)+f(1,0)
$$

Example: the Potts-model is regular, since

$$
\llbracket 0 \neq 0 \rrbracket+\llbracket 1 \neq 1 \rrbracket=0 \leqslant 2=\llbracket 0 \neq 1 \rrbracket+\llbracket 1 \neq 0 \rrbracket .
$$

We have already seen that binary image segmentation can be reformulated as the minimization of an energy function $E: \mathbb{B}^{\mathcal{V}} \times \mathcal{X} \rightarrow \mathbb{R}$:

$$
E(\mathbf{y} ; \mathbf{x})=\sum_{i \in \mathcal{V}} E_{i}\left(y_{i} ; x_{i}\right)+\sum_{(i, j) \in \mathcal{E}} w \cdot \llbracket y_{i} \neq y_{j} \rrbracket .
$$

where \mathcal{V} corresponds to the output variables, i.e. the pixels, and \mathcal{E} includes the pairs of 4 -neighboring pixels.

Assume probability densities f_{bg} and f_{fg} estimated for the background and the foreground, respectively. The unary energies E_{i} for all $i \in \mathcal{V}$ can be defined as

$$
\begin{aligned}
& E_{i}\left(0, x_{i}\right)=0, \\
& E_{i}\left(1, x_{i}\right)=\log \frac{f_{\mathrm{bg}}\left(x_{i}\right)}{f_{\mathrm{fg}}\left(x_{i}\right)} .
\end{aligned}
$$

If an orphan p does not find a valid parent then it becomes a free node

Scan all neighbors q of p such that q belong to the same tree as p :
■ if tree $c(q, p)>0$, add q to the active set

- if parent $(q)=p$, add q to the set of orphans and set parent $(q)=\varnothing$

IN2329 - Probabilistic Graphical Models in Computer Vision 5. Move making algorithms - 10 / 39

Binary image segmentation

Let us consider an energy function E of n binary variables which can be written as the sum of functions of up to two variables, that is $E: \mathbb{B}^{n} \rightarrow \mathbb{R}$

$$
E\left(y_{1}, \ldots, y_{n}\right)=\sum_{i} E_{i}\left(y_{i}\right)+\sum_{i<j} E_{i j}\left(y_{i}, y_{j}\right) .
$$

E is regular, if each term $E_{i j}: \mathbb{B}^{2} \rightarrow \mathbb{R}$ for all $i<j$ satisfies

$$
E_{i j}(0,0)+E_{i j}(1,1) \leqslant E_{i j}(0,1)+E_{i j}(1,0) .
$$

If each term $E_{i j}$ is regular, then it is possible to find the global minimum of E in polynomial time by solving a minimum $s-t$ cut problem.

IN2329 - Probabilistic Graphical Models in Computer Vision

Let us consider the following example

Through this example we illustrate how to minimize regular energy functions consisting of up to pairwise relationships. In our example $\mathbf{y} \in \mathbb{B}^{2}$ and $E(\mathbf{y})$ is defined as

$$
E(\mathbf{y})=E_{i}\left(y_{1}\right)+E_{j}\left(y_{2}\right)+E_{i j}\left(y_{i}, y_{j}\right) .
$$

We will create a flow network $\left(\mathcal{V} \cup\{s, t\}, \mathcal{E}^{\prime}, c, s, t\right)$ such that the minimum $s-t$ cut will correspond to the minimization of our energy function $E(\mathbf{y})$, where the labeling for each $i \in \mathcal{V}$ is defined as

$$
y_{i}= \begin{cases}0, & \text { if } i \in \mathcal{S}, \\ 1, & \text { if } i \in \mathcal{T}\end{cases}
$$

Thit - Graph construction: unary energies
$\square \square \square \square \square$ Boykov-Kolmogorov algorithm Binary image segmentation Multi-label problem
Let us consider the unary energy function $E_{i}:\{0,1\} \rightarrow \mathbb{R}$.

When $E_{i}(1)>E_{i}(0)$ holds, then we can write

$$
\underset{y_{i} \in\{0,1\}}{\operatorname{argmin}} E_{i}\left(y_{i}\right)=\underset{y_{i} \in\{0,1\}}{\operatorname{argmin}} E_{i}\left(y_{i}\right)-E_{i}(0) .
$$

Obviously, the minimum $s-t$ cut of the flow network will correspond to
$\underset{y_{i} \in\{0,1\}}{\operatorname{argmin}} E_{i}\left(y_{i}\right)$.
$y_{i} \in\{0,1\}$

Labeling: $y_{i}=y_{j}=0$.

$$
\begin{aligned}
C-A \geqslant 0 & \Rightarrow C \geqslant A . \\
D-C \geqslant 0 & \Rightarrow D \geqslant C \Rightarrow D \geqslant A . \\
0 \leqslant B+C-A-D \leqslant B-A & \Rightarrow B \geqslant A .
\end{aligned}
$$

5. Move making algorithms -19 / 39

"tit
Graph construction: pairwise energy,

$$
C-A \geqslant 0, C-D \geqslant 0 *
$$

Boykov-Kolmogorov algorithm Binary image segmentation Multi-label problem

Note that the labeling $y_{i}=1, y_{j}=0$ is not possible in this case, since

$$
C-A \geqslant 0 \Rightarrow C \geqslant A
$$

IN2329 - Probabilistic Graphical Models in Computer Vision
5. Move making algorithms $-20 / 39$
"itr
Graph construction: pairwise energy, $C-A \geqslant 0, C-D \geqslant 0$ *
Boykov-Kolmogorov algorithm Binary image segmentation Multi-label problem

Assume that $\min \{C-A, B+C-A-D, C-D\}=C-A$.

$E_{i j}$	$y_{j}=0$	$y_{j}=1$
$y_{i}=0$	A	B
$y_{i}=1$	C	D

Labeling: $y_{i}=y_{j}=1$.

$$
\begin{aligned}
C-A \leqslant B+C-A-D & \Rightarrow 0 \leqslant B-D \Rightarrow B \geqslant D . \\
C-A \leqslant C-D & \Rightarrow A \geqslant D . \\
C-D \geqslant 0 & \Rightarrow C \geqslant D .
\end{aligned}
$$

IN2329 - Probabilistic Graphical Models in Computer Vision
5. Move making algorithms -22 / 39

(fitn

Graph construction: pairwise energy, $C-A \geqslant 0, C-D \geqslant 0 *$
Boykov-Koimogorov algorithm Binary image segmentation - Muiti-abel problem

Assume that $\min \{C-A, B+C-A-D, C-D\}=B+C-A-D$.

Labeling: $y_{i}=0, y_{j}=1$.

$E_{i j}$	$y_{j}=0$	$y_{j}=1$
$y_{i}=0$	A	B
$y_{i}=1$	C	D

$$
\begin{aligned}
B+C-A-D \leqslant C-A & \Rightarrow B \leqslant D . \\
B+C-A-D \leqslant C-D & \Rightarrow B \leqslant A . \\
C-A \geqslant 0 & \Rightarrow A \leqslant C \Rightarrow B \leqslant C .
\end{aligned}
$$

Assume that $\min \{C-A, B+C-A-D, C-D\}=C-D$.

$E_{i j}$	$y_{j}=0$	$y_{j}=1$
$y_{i}=0$	A	B
$y_{i}=1$	C	D

Labeling: $y_{i}=y_{j}=0$.

$$
\begin{aligned}
C-D \leqslant B+C-A-D & \Rightarrow B \geqslant A . \\
C-D \leqslant C-A & \Rightarrow D \geqslant A . \\
C-D \geqslant 0 & \Rightarrow C \geqslant D \Rightarrow C \geqslant A .
\end{aligned}
$$

Let us consider $E_{i j}\left(z_{i}, z_{j}\right)$ for a given $(i, j) \in \mathcal{E}$:

$E_{i j}$	α	β
α	$E_{i j}(\alpha, \alpha)$	$E_{i j}(\alpha, \beta)$
β	$E_{i j}(\beta, \alpha)$	$E_{i j}(\beta, \beta)$

If we assume that $E_{i j}: \mathcal{L} \times \mathcal{L} \rightarrow \mathbb{R}$ is a semi-metric for each $(i, j) \in \mathcal{E}$, then

$$
E_{i j}(\alpha, \alpha)+E_{i j}(\beta, \beta)=0 \leqslant E_{i j}(\alpha, \beta)+E_{i j}(\beta, \alpha)=2 E_{i j}(\alpha, \beta)
$$

which means that $E_{i j}$ is regular w.r.t. the labeling $\mathcal{Z}_{\alpha \beta}(\mathbf{y}, \alpha, \beta)$.

Let us consider the following binary energy function:

$$
E(\mathbf{z})=E_{i}\left(z_{i}\right)+E_{j}\left(z_{j}\right)+E_{i j}\left(z_{i}, z_{j}\right)
$$

where $E_{i j}$ is assumed to be a semi-metric.

Since $E_{i j}$ is a semi-metric, we can construct a flow for $E(\mathbf{y})$ as follows:

z_{i}	z_{j}	$E(\mathbf{z})$
0	0	$E_{i}(0)+E_{j}(0)$
0	1	$E_{i}(0)+E_{j}(1)+E_{i j}(1,0)$
1	0	$E_{i}(1)+E_{j}(0)+E_{i j}(1,0)$
1	1	$E_{i}(1)+E_{j}(1)$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -33 / 39

What Graph construction: t-links

Boykov-Kolmogorov algorithm Binary image segmentation Multi-label problem

We need to minimize the following regular energy function:
$\mathbf{z}^{*} \in \underset{\mathbf{z} \in \mathcal{Z}_{\alpha \beta}(\mathbf{y}, \alpha, \beta)}{\operatorname{argmin}} \sum_{\substack{i \in \mathcal{V} \\ y_{i} \in\{\alpha, \beta\}}} E_{i}\left(z_{i}\right)+\sum_{\substack{(i, j) \in \mathcal{E} \\ y_{i} \in\{\alpha, \beta\}, y_{j} \notin\{\alpha, \beta\}}} E_{i j}\left(z_{i}, y_{j}\right)+\sum_{\substack{(i, j) \in \mathcal{E} \\ y_{i} \notin\{\alpha, \beta\}, y_{j} \in\{\alpha, \beta\}}} E_{i j}\left(y_{i}, z_{j}\right)+\sum_{\substack{(i, j) \in \mathcal{E} \\ y_{i}, y_{j} \in\{\alpha, \beta\}}} E_{i j}\left(z_{i}, z_{j}\right)$.
Based on construction applied for binary image segmentation, we can also define a flow network $\left(\mathcal{V}^{\prime}, \mathcal{E}^{\prime}, c, \alpha, \beta\right)$, where $\mathcal{V}^{\prime}=\{\alpha, \beta\} \cup\left\{i \in \mathcal{V}: y_{i} \in\{\alpha, \beta\}\right\}$ and
$\mathcal{E}^{\prime}=\underbrace{\left\{(\alpha, i),(i, \beta) \mid i \in \mathcal{V}^{\prime} \backslash\{\alpha, \beta\}\right\}}_{\text {t-links }} \cup \underbrace{\left\{(i, j),(j, i) \mid i, j \in \mathcal{V}^{\prime} \backslash\{\alpha, \beta\},(i, j) \in \mathcal{E}\right\}}_{\text {n-links }}$.

t-links: for all $i \in \mathcal{V}^{\prime} \backslash\{\alpha, \beta\}$

$$
\begin{aligned}
& c(\alpha, i)=E_{i}(\beta)+\sum_{(i, j) \in \mathcal{E}, y_{j} \notin\{\alpha, \beta\}} E_{i j}\left(\beta, y_{j}\right)+\sum_{(j, i) \in \mathcal{E}, y_{j} \notin\{\alpha, \beta\}} E_{j i}\left(y_{j}, \beta\right) . \\
& c(i, \beta)=E_{i}(\alpha)+\sum_{(i, j) \in \mathcal{E}, y_{j} \notin\{\alpha, \beta\}} E_{i j}\left(\alpha, y_{j}\right)+\sum_{(j, i) \in \mathcal{E}, y_{j} \notin\{\alpha, \beta\}} E_{j i}\left(y_{j}, \alpha\right) .
\end{aligned}
$$

Input: An energy function $E(\mathbf{y})=\sum_{i \in \mathcal{V}} E_{i}\left(y_{i}\right)+\sum_{(i, j) \in \mathcal{E}} E_{i j}\left(y_{i}, y_{j}\right)$ to be minimized, where $E_{i j}$ is a semi-metric for each $(i, j) \in \mathcal{E}$
Output: A local minimum $\mathbf{y} \in \mathcal{Y}=\mathcal{L}^{\mathcal{V}}$ of $E(\mathbf{y})$
1: Choose an arbitrary initial labeling $\mathbf{y} \in \mathcal{Y}$
2: $\mathrm{y}^{*} \leftarrow \mathrm{y}$
3: for all $(\alpha, \beta) \in \mathcal{L} \times \mathcal{L}$ do
find $\mathbf{z}^{*} \in \operatorname{argmin}_{\mathbf{z} \in \mathcal{Z}_{\alpha \beta}\left(\mathbf{y}^{*}, \alpha, \beta\right)} E(\mathbf{z})$ $\mathbf{y}^{*} \leftarrow \mathrm{z}^{*}$
end for
if $E\left(\mathbf{y}^{*}\right)<E(\mathbf{y})$ then
$\mathrm{y} \leftarrow \mathrm{y}^{*}$ Goto Step 2
end if
$\alpha-\beta$ swap algorithm is guaranteed to terminate in a finite number of cycles. This algorithm computes at least $|\mathcal{L}|^{2}$ graph cuts, which may take a lot of time, even for moderately large label spaces.

IN2329 - Probabilistic Graphical Models in Computer Vision

- A binary energy function E consisting of up to pairwise functions is regular, if for each term $E_{i j}$ for all $i<j$ satisfies

$$
E_{i j}(0,0)+E_{i j}(1,1) \leqslant E_{i j}(0,1)+E_{i j}(1,0)
$$

- The minimization of regular energy functions can be achieved via minCut-maxFlow.
- The multi-label problem for a finite label set \mathcal{L}

$$
E(\mathbf{y} ; \mathbf{x})=\sum_{i \in \mathcal{V}} E_{i}\left(y_{i} ; \mathbf{x}\right)+\sum_{(i, j) \in \mathcal{E}} E_{i j}\left(y_{i}, y_{j} ; \mathbf{x}\right)
$$

can be approximately solved by applying $\alpha-\beta$ swap, if $E_{i j}$ is semi-metric.
In the next lecture we will learn about

- α-expansion: approximate solution for the multi-label problem, if $E_{i j}$ is metric
- FastPD algorithm: linear programming relaxation for multi-label problem

1. Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of Min-cut/Max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9):1124-1137, September 2004
2. Vladimir Kolmogorov and Ramin Zabih. What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147-159, February 2004
3. Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222-1239, November 2001
4. Sebastian Nowozin and Christoph H. Lampert. Structured prediction and learning in computer vision. Foundations and Trends in Computer Graphics and Vision, 6(3-4), 2010
