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Let us consider an undirected graphical model given by G “ pV, Eq, which takes
values from an arbitrary (finite) label set L. More specially, assume that the
corresponding energy function E : LV Ñ R is given by

Epxq “
ÿ

iPV
Eipxiq `

ÿ

pi,jqPE
wij ¨ dpxi,xjq ,

where Ei stands for a unary energy function, wij P R are weighting factors, and d
is a metric or a semi-metric (i.e. the triangle inequality is not necessary satisfied).

In the previous lecture we learnt about α ´ β swap, which approximately solves
this problem.

Today we are going to learn about

■ α-expansion, which provides an approximate solution, and
■ the linear programming formalization of the multi-labeling problem.

α-expansion
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α-expansion allows each variable either to keep its current label or to change it to
the label α P L. We introduce the following notation

Zαpy, αq “ tz P Y : zi P tyi, αu for all i P Vu .

The minimization of the energy function E can be reformulated as follows:

ẑ P argmin
zPZαpy,αq

Epzq “ argmin
zPZαpy,αq

ÿ

iPV
Eipziq `

ÿ

pi,jqPE
Eijpzi, zjq

“ argmin
zPZαpy,αq

” ÿ

iPV, yi“α

Eipαq
looooooomooooooon

constant

`
ÿ

iPV, yi‰α

Eipziq
looooooomooooooon

unary

`
ÿ

pi,jqPE
yi“α, yj“α

Eijpα, αq
looooooooomooooooooon

constant

`
ÿ

pi,jqPE
yi“α, yj‰α

Eijpα, zjq

looooooooomooooooooon
unary

`
ÿ

pi,jqPE
yi‰α, yj“α

Eijpzi, αq

looooooooomooooooooon
unary

`
ÿ

pi,jqPE
yi‰α, yj‰α

Eijpzi, zjq

looooooooomooooooooon
pairwise

ı
.

Local optimization
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Let us consider Eijpzi, zjq for a given pi, jq P E :

Eij α yj
α Eijpα, αq Eijpα, yjq
yi Eijpyi, αq Eijpyi, yjq

If we assume that Eij : L ˆ L Ñ R is a metric for each pi, jq P E , then

Eijpα, αq ` Eijpyi, yjq “ Eijpyi, yjq ď Eijpyi, αq ` Eijpα, yjq ,
which means that Eij is regular w.r.t. the labeling Zαpy, αq.

Graph construction
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We need to minimize the following regular energy function:

ẑ P argmin
zPZαpy,αq

ÿ

iPV
yi‰α

Eipziq `
ÿ

pi,jqPE
yi“α, yj‰α

Eijpα, zjq `
ÿ

pi,jqPE
yi‰α, yj“α

Eijpzi, αq

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon
unary

`
ÿ

pi,jqPE
yi‰α, yj‰α

Eijpzi, zjq

looooooooomooooooooon
pairwise

.

Based on construction applied for binary image segmentation, we can also define a
flow network pV 1, E 1, c, α, ᾱq, where V 1 “ tα, ᾱu Y ti P V : yi ‰ αu and
E 1 “ tpα, iq, pi, ᾱq : i P V 1ztα, ᾱuulooooooooooooooooomooooooooooooooooon

t-links

Y tpi, jq P E : i, j P V 1ztα, ᾱuulooooooooooooooooomooooooooooooooooon
n-links

.

Graph construction: t-links
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s

i j

t

Eip1q` C´A Ejp1q
B C̀ Á́ D

Eip0q Ejp0q`C´D

t-links: for all i P V 1ztα, ᾱu

cpα, iq “Eipyiq `
ÿ

pi,jqPE, yj“α

Eijpyi, αq `
ÿ

pj,iqPE, yj“α

Ejipα, yiq `
ÿ

pi,jqPE, yj‰α

Eijpyi, αq
looooooooomooooooooon

C

.

cpi, ᾱq “Eipαq `
ÿ

pj,iqPE, yj‰α

Ejipyj , αq
looooooooomooooooooon

C

´
ÿ

pj,iqPE, yj‰α

Ejipyj , yiq
looooooooomooooooooon

D

.



Graph construction: n-links
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α

i j

ᾱ

Eip1q` C´ A Ejp1q
B`C´ A´ D

Eip0q Ejp0q` C´ D

n-links: for all pi, jq P E , where i, j P V 1ztα, ᾱu
cpi, jq “ Eijpα, yjq ` Eijpyi, αq ´ Eijpyi, yjq .

α-expansion algorithm ˚
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Input: An energy function Epyq “ ř
iPV Eipyiq ` ř

pi,jqPE Eijpyi, yjq to be
minimized, where Eij is a metric for each pi, jq P E

Output: A local minimum y P Y “ LV of Epyq
1: Choose an arbitrary initial labeling y P Y
2: ŷ Ð y
3: for all α P L do
4: find ẑ P argminzPZαpŷ,αq Epzq
5: ŷ Ð ẑ
6: end for
7: if Epŷq ă Epyq then
8: y Ð ŷ
9: Goto Step 2

10: end if

α-expansion is guaranteed to terminate in a finite number of cycles. This algorithm
computes at least |L| graph cuts, which may take a lot of time, when the label
space L is large.

Optimality ˚
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The α ´ β swap does not guarantee any closeness to the global minimum.
Nevertheless, the local minimum that the α-expansion algorithm will find is at
most twice the global minimum y˚.

We have already assumed that Eij is a metric for each pi, jq P E , hence
Eijpα, βq ‰ 0 for α ‰ β P L. Let us define

c “ max
pi,jqPE

ˆ
maxα‰βPLEijpα, βq
minα‰βPLEijpα, βq

˙
.

Theorem 1. Let ŷ be a local minimum when the expansion moves are allowed and
y˚ be the globally optimal solution. Then Epŷq ď 2cEpy˚q.

Stereo matching
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Cleft

Left view

Q

q

P

p1

Cright

Right view

p2

e

P 1

p1
2

Given two images (i.e. left and right), an observed 2D point p1 on the left image
corresponds to a 3D point P that is situated on a line in R3. This line will be
observed as a line on the right image.
P can be determined based on p1 and p2. We assume that the pixels p1 and p2,
corresponding to P , have similar visual appearance.

Rectified images ˚
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Suppose that we are given two cameras looking at parallel direction. Let Cleft be
the origin of the coordinate system and assume that the image planes are co-planar
and parallel to the x and y axis.

Cleft Cright

Right view

x

y

z

Left view

P

p1 p2

P 1

p1
2

The intersection of the triangle △pCleft, P, Crightq and the plane including the
images planes is the segment p1p2. Therefore p1p2 is parallel to the x-axis.
For more details you may refer to the course on Computer Vision II: Multiple View Geometry.

Stereo matching
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The goal is to reconstruct 3D points according to corresponding pixels.
We assume rectified images, which means that the corresponding pixels are
situated in horizontal lines according to some displacement.

Left view Right view

Therefore, we need to search for corresponding points in the same row of both
views. We also assume that the pixels p1 and p2 corresponding to P have similar
intensities.

Energy function
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We define L “ t1, 2, . . . , Du as the label set, i.e. set of possible horizontal
displacement of pixels on the right view), where D is a constant.
Therefore the output domain Y “ LV and the energy function has the following
form

Epy;xq “
ÿ

iPV
Eipyi;xq `

ÿ

pi,jqPE
Eijpyi, yj ;xq ,

where x consists of the images (i.e. left and right view) denoted by xleft and xright,
respectively.

Unary energies (a.k.a. data terms) Ei for all i P V are defined as

Eipyi;xq “ minp|xlefti ´ xrighti`yi
|2,Kq˘

,

where K is a constant (e.g., K “ 202).



Energy function
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Pairwise energies (a.k.a. smooth terms) Eij for all pi, jq P E are defined as

Eijpyi, yj ;xq “ Up|xlefti ´ xleftj |q ¨ Jyi ‰ yjK ,

where

Up|xlefti ´ xleftj |q “
#
2C, if |xlefti ´ xleftj | ď 5

C, otherwise

for some constant C.

Note the pairwise energies are defined by weighted Potts-model, which is a
metric.

Results ˚
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Left view Right view

Ground truth Result of α ´ β swap Result of α-expansion

It is worth noting that α-expansion algorithm generally runs faster than α ´ β
swap. There is optimality guarantee only for α-expansion algorithm, however, the
two algorithms perform almost the same in many practical applications.

Summary ˚
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■ A binary energy function E consisting of up to pairwise functions is regular, if
for each term Eij for all i ă j satisfies

Eijp0, 0q ` Eijp1, 1q ď Eijp0, 1q ` Eijp1, 0q .
■ The minimization of regular energy functions can be achieved via graph cut.
■ The multi-label problem for a finite label set L

Epy;xq “
ÿ

iPV
Eipyi;xq `

ÿ

pi,jqPE
Eijpyi, yj ;xq ,

can be approximately solved by applying

◆ α ´ β swap, if Eij is semi-metric;
◆ α-expansion, if Eij is metric.

Equivalent integer linear program
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We are generally interested to find a MAP labelling x˚:

x˚ P argmin
xPL|V|

Epxq “ argmin
xPL|V|

! ÿ

iPV
Eipxiq `

ÿ

pi,jqPE
wij ¨ dpxi, xjq

)
.

This can be equivalently written as an integer linear program (ILP):

min
xi:α,xij:αβ

ÿ

iPV

ÿ

αPL
Eipαqxi:α `

ÿ

pi,jqPE
wij

ÿ

α,β PL
dpα, βqxij:αβ

subject to
ř

αPL xi:α “ 1 @i P V
ř

αPL xij:αβ “ xj:β @β P L, pi, jq P E
ř

βPL xij:αβ “ xi:α @α P L, pi, jq P E
xi:α, xij:αβ P B @α, β P L, pi, jq P E

xi:α indicates whether vertex i is assigned label α, while xij:αβ indicates whether
(neighboring) vertices i, j are assigned labels α, β, respectively.

Interpretation of the constraints
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Let us assume that L “ t1, 2, 3u and consider the following factor graph example:
F1

Y1

F12

Y2

F2

x1:1
x1:2
x1:3

x12:11
x12:23

x2:1
x2:2
x2:3

Uniqueness: The constraints
ř

αPL xi:α “ 1 for all i P V simply express the fact
that each vertex must receive exactly one label.

Consistency: The constraintsÿ

αPL
xij:αβ “ xj:β and

ÿ

βPL
xij:αβ “ xi:α @α, β P L , pi, jq P E

maintain consistency between variables, i.e. if xi:α “ 1 and xj:β “ 1 holds true,
then these constraints force xij:αβ “ 1 to hold true as well.

Primal-dual LP
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The ILP defined before is in general NP-hard. Therefore we deal with the LP
relaxation of our ILP. The relaxed LP can be written in standard form as follows:

min
xi:α,xij:αβ

xc,xy
subject to Ax “ b,x ě 0 .

LP relaxation: cost function ˚
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min
xi:α,xij:αβ

xc,xy subject to Ax “ b,x ě 0 .

We may write x “ “
xT
1 xT

2

‰T
, where

x1 “ “
x1:1 ¨ ¨ ¨ x1:3 x2:1 ¨ ¨ ¨ x2:3

‰T P Rmn ,

where n “ |V| and m “ |L|, and

x2 “ “
x12:11 ¨ ¨ ¨ x12:13 ¨ ¨ ¨ x12:31 ¨ ¨ ¨ x12:33

‰T P R|E|m2
.

Similarly, we can write c “ “
cT1 cT2

‰T
, where

c1 “ “
E1p1q ¨ ¨ ¨ E1p3q E2p1q ¨ ¨ ¨ E2p3q‰T P Rmn

c2 “ “
w12dp1, 1q ¨ ¨ ¨ w12dp1, 3q ¨ ¨ ¨ w12dp3, 1q ¨ ¨ ¨ w12dp3, 3q‰T P R|E|m2

.

Therefore, xc,xy “ xc1,x1y ` xc2,x2y.



LP relaxation: uniqueness constraints ˚
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min
xi:α,xij:αβ

xc,xy subject to Ax “ b,x ě 0 .

We can write the (uniqueness) constraints
ř

αPL xi:α “ 1 for all i P V as

„
1 1 1 0 0 0
0 0 0 1 1 1



looooooooooomooooooooooon
A11

»
—–
x1:1
...

x2:3

fi
ffifl “ A11x1 “ 1n “: b1 ,

where 1n P Rn is the vector of all-ones.

LP relaxation: consistency constraints ˚
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min
xi:α,xij:αβ

xc,xy subject to Ax “ b,x ě 0 .

The (consistency) constraints
ř

αPL xij:αβ “ xj:β ô ´xj:β ` ř
αPL xij:αβ “ 0

and
ř

βPL xij:αβ “ xi:α ô ´xi:α ` ř
βPL xij:αβ “ 0 can be expressed as

»
——————–

0 0 0 ´1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 ´1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 ´1 0 0 1 0 0 1 0 0 1

´1 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 ´1 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 ´1 0 0 0 0 0 0 0 0 0 1 1 1

fi
ffiffiffiffiffiffifl

»
————————–

x1:1
...

x2:3
x12:11

...
x12:33

fi
ffiffiffiffiffiffiffiffifl

“ 0,

“
A21 A22

‰ „
x1

x2


“ 02|E|m “: b2 .

LP relaxation: constraints ˚
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min
xi:α,xij:αβ

xc,xy subject to Ax “ b,x ě 0 .

We can write all the constraints in a matrix-vector notation as follows.

Ax “
„

A11 0nˆ|E|m2

A21 A22

 „
x1

x2


“

„
1n

02|E|m


“

„
b1

b2


“ b .

Hence, A P Rn`2|E|mˆmn`|E|m2
is a sparse matrix with elements -1,0 and 1,

furthermore b P Rn`2|E|m, where the first mn elements are equal to one and the
others are equal to zero.

Primal-dual LP
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Consider a linear program (given in standard form):

min
xPRn

xc,xy
subject to Ax “ b,x ě 0 ,

for a constraint matrix A P Rmˆn, a constraint vector b P Rm and a cost vector
c P Rn.

The dual LP is defined as

max
yPRm

xb,yy
subject to ATy ď c .

For feasible solutions x and y weak duality holds:

xb,yy “ bTy “ xT pATyq “ pyTAqx ď cTx “ xc,xy .

Dual LP
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max
yi,yij:α,yji:β

xb,yy subject to ATy ď c .

Note that the dual variables yi for all i P V and yij:α, yji:β for all pi, jq P E ,
α, β P L correspond to the constraints of the primal LP.

We can write y “ “
yT
1 yT

2 yT
3

‰T
, where y1 “ “

y1 ¨ ¨ ¨ yn
‰T P Rn, and

y2 P R|E|m and y3 P R|E|m are the vectors consisting of the variables yji:β and yij:α
in the same order as it is defined in the case of the primal LP.

The cost function results in

xb,yy “ xb1,y1y ` xb2,
“
yT
2 yT

3

‰T y “ x1n,y1y “
nÿ

i“1

yi .

The constraints ATy ď c are given by

ATy “
„

AT
11 AT

21

0|E|m2ˆn AT
22


y ď

„
c1
c2


“ c .

Dual LP ˚
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max
yi,yij:α,yji:β

x1n,y1y

subject to

„
AT

11 AT
21

0|E|m2ˆn AT
22


y ď

„
c1
c2


.

Or equivalently, we can formulate the dual LP as

max
yi,yij:α,yji:β

ÿ

iPV
yi

subject to yi ´
ÿ

jPV, pi,jqPE
yij:α ď Eipαq @i P V, α P L

yij:α ` yji:β ď wijdpα, βq @pi, jq P E , α, β P L

An intuitive view of the dual variables
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We will refer to xi P L as the active label for a given the vertex i P V.
For each vertex we have a different copy of all labels in L. It is assumed that all
these labels represent balls floating at certain heights relative to a reference plane.

For this sake we introduce height
variables defined as

hipαq ∆“ Eipαq `
ÿ

jPV,pi,jqPE
yij:α .

The constraints yi ´ ř
jPV:pi,jqPE yij:α ď Eipαq can be equivalently written as

yi ď Eipαq `
ÿ

jPV:pi,jqPE
yij:α “ hipαq @i P V, α P L .

Since our objective is to maximize
ř

iPV yi, the following relation holds

yi “ min
αPL hipαq @i P V .

Balance variables and load
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We will refer to the variables yij:α, yji:β as balance variables. Specially, the pair
of yij:α, yji:α is called conjugate balance variables.

The balls are not static, but may move in pairs through updating pairs of
conjugate balance variables as hipαq “ Eipαq ` ř

jPV,pi,jqPE yij:α. Therefore, the
role of balance variables is to raise or lower labels.

It is due to yij:α ` yji:α ď wijdpα, αq “ 0 ñ yij:α ď ´yji:α.

We will call the variables yij:xi as active balance variable and use the following
notation for the “load” between neighbors i, j, defined as

loadij “ yij:xi ` yji:xj .



Primal-dual LP for multi-label problem
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The (relaxed) primal LP:

min
xi:α,xij:αβě0

ÿ

iPV

ÿ

αPL
Eipαqxi:α `

ÿ

pi,jqPE
wij

ÿ

α,β PL
dpα, βqxij:αβ

subject to
ř

αPL xi:α “ 1 @i P V
ř

αPL xij:αβ “ xj:β @β P L, pi, jq P E
ř

βPL xij:αβ “ xi:α @α P L, pi, jq P E

The dual LP:

max
yi,yij:α,yji:β

ÿ

iPV
yi

subject to yi ´
ÿ

jPV:pi,jqPE
yij:α ď Eipαq @i P V, α P L

yij:α ` yji:β ď wijdpα, βq @pi, jq P E , α, β P L

Primal-dual principle
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Theorem 2. If x and y are integral-primal and dual feasible solutions satisfying:

xc,xy ď ǫxb,yy
for ǫ ě 1, then x is an ǫ-approximation to the optimal integral solution x˚, that is

xc,x˚y ď xc,xy ď ǫxb,yy ď ǫxc,x˚y .

The relaxed complementary slackness
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One way to estimate a pair px,yq satisfying the fundamental inequality

xc,xy ď ǫxb,yy
relies on the complementary slackness principle.

Theorem 3. If the pair px,yq of integral-primal and dual feasible solutions
satisfies the so-called relaxed primal complementary slackness conditions:

@j : pxj ą 0q ñ
ÿ

i

aijyi ě cj
ǫj

,

then px,yq also satisfies xc,xy ď ǫxb,yy with ǫ “ maxj ǫj and therefore x is an
ǫ-approximation to the optimal integral solution x˚.

Proof. Exercise.

We aim to satisfy relaxed complementary slackness conditions in order to achieve
an ǫ-approximation solution.

Primal-dual schema
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Typically, primal-dual ǫ-approximation algorithms construct a sequence
pxk,ykqk“1,...,t of primal and dual solutions until the elements xt, yt of the last
pair are both feasible and satisfy the relaxed primal complementary slackness
conditions, hence the condition xc,xy ď ǫxb,yy will be also fulfilled.

Summary ˚
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We have learned about primal-dual linear programming relaxation for the
multi-labeling problem.

In the next lecture we will learn about the Fast primal-dual algorithm for the
multi-labeling problem.

Literature ˚
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