Probabilistic Graphical Models in Computer Vision (IN2329)

Csaba Domokos
Summer Semester 2017

Agenda for today's lecture *
α-expansion Stereo matching Primal-dual LP Primal-dual principle

Let us consider an undirected graphical model given by $G=(\mathcal{V}, \mathcal{E})$, which takes values from an arbitrary (finite) label set \mathcal{L}. More specially, assume that the corresponding energy function $E: \mathcal{L}^{\mathcal{V}} \rightarrow \mathbb{R}$ is given by

$$
E(\mathbf{x})=\sum_{i \in \mathcal{V}} E_{i}\left(\mathbf{x}_{i}\right)+\sum_{(i, j) \in \mathcal{E}} w_{i j} \cdot d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right),
$$

where E_{i} stands for a unary energy function, $w_{i j} \in \mathbb{R}$ are weighting factors, and d is a metric or a semi-metric (i.e. the triangle inequality is not necessary satisfied).
In the previous lecture we learnt about $\alpha-\beta$ swap, which approximately solves this problem.
Today we are going to learn about

- α-expansion, which provides an approximate solution, and
- the linear programming formalization of the multi-labeling problem.

IN2320 - Probabilistic Graphical Models in Computer Vision

6. Primal-dual Schema - 3 / 40

α-expansion allows each variable either to keep its current label or to change it to the label $\alpha \in \mathcal{L}$. We introduce the following notation

$$
\mathcal{Z}_{\alpha}(\mathbf{y}, \alpha)=\left\{\mathbf{z} \in \mathcal{Y}: z_{i} \in\left\{y_{i}, \alpha\right\} \text { for all } i \in \mathcal{V}\right\}
$$

The minimization of the energy function E can be reformulated as follows:

$$
\begin{aligned}
& \hat{\mathbf{z}} \in \underset{\mathbf{z} \in \mathcal{Z}_{\alpha}(\mathbf{y}, \alpha)}{\operatorname{argmin}} E(\mathbf{z})=\underset{\mathbf{z} \in \mathcal{Z}_{\alpha}(\mathbf{y}, \alpha)}{\operatorname{argmin}} \sum_{i \in \mathcal{V}} E_{i}\left(z_{i}\right)+\sum_{(i, j) \in \mathcal{E}} E_{i j}\left(z_{i}, z_{j}\right) \\
&=\underset{\mathbf{z} \in \mathcal{Z}_{\alpha}(\mathbf{y}, \alpha)}{\operatorname{argmin}}[\underbrace{\sum_{i \in \mathcal{V}, y_{i}=\alpha} E_{i}(\alpha)}_{\text {constant }}+\underbrace{\sum_{i \in \mathcal{V}, y_{i} \neq \alpha} E_{i}\left(z_{i}\right)}_{\text {unary }} \\
&\left.+\sum_{\substack{(i, j) \in \mathcal{E} \\
y_{i}=\alpha, y_{i}=\alpha}} E_{i j}(\alpha, \alpha)+\sum_{\substack{(i, j) \in \mathcal{E} \\
y_{i}=\alpha, u_{i} \neq \alpha}} E_{i j}\left(\alpha, z_{j}\right)+\sum_{\substack{(i, j) \in \mathcal{E} \\
y_{i} \neq \alpha, u_{i}=\alpha}} E_{i j}\left(z_{i}, \alpha\right)+\sum_{\substack{(i, j) \in \mathcal{E} \\
y_{i} \neq \alpha, u_{i} \neq \alpha}} E_{i j}\left(z_{i}, z_{j}\right)\right] .
\end{aligned}
$$

\qquad $\underbrace{y_{i}=\alpha, y_{j} \neq \alpha}$
$\underbrace{y_{i} \neq \alpha, y_{j}=\alpha}$ \qquad
6. Primal-dual Schema - 5 / 40

We need to minimize the following regular energy function:

$$
\hat{\mathbf{z}} \in \underset{\mathbf{z} \in \mathcal{Z}_{\alpha}(\mathbf{y}, \alpha)}{\operatorname{argmin}} \underbrace{\sum_{\substack{i \in \mathcal{V} \\ y_{i} \neq \alpha}} E_{i}\left(z_{i}\right)+\sum_{\substack{(i, j) \in \mathcal{E} \\ y_{i}=\alpha, y_{j} \neq \alpha}} E_{i j}\left(\alpha, z_{j}\right)+\sum_{\substack{(i, j) \in \mathcal{E} \\ y_{i} \neq \alpha, y_{j}=\alpha}} E_{i j}\left(z_{i}, \alpha\right)}_{\text {unary }}+\underbrace{\sum_{\substack{(i, j) \in \mathcal{E} \\ y_{i} \neq \alpha, y_{j} \neq \alpha}} E_{i j}\left(z_{i}, z_{j}\right)}_{\text {pairwise }}
$$

Based on construction applied for binary image segmentation, we can also define a flow network $\left(\mathcal{V}^{\prime}, \mathcal{E}^{\prime}, c, \alpha, \bar{\alpha}\right)$, where $\mathcal{V}^{\prime}=\{\alpha, \bar{\alpha}\} \cup\left\{i \in \mathcal{V}: y_{i} \neq \alpha\right\}$ and
$\mathcal{E}^{\prime}=\underbrace{\left\{(\alpha, i),(i, \bar{\alpha}): i \in \mathcal{V}^{\prime} \backslash\{\alpha, \bar{\alpha}\}\right\}}_{\mathrm{t} \text {-links }} \cup \underbrace{\left\{(i, j) \in \mathcal{E}: i, j \in \mathcal{V}^{\prime} \backslash\{\alpha, \bar{\alpha}\}\right\}}_{\mathrm{n} \text {-links }}$.

6. Primal-dual Schema

α-expansion

Let us consider $E_{i j}\left(z_{i}, z_{j}\right)$ for a given $(i, j) \in \mathcal{E}$:

$E_{i j}$	α	y_{j}
α	$E_{i j}(\alpha, \alpha)$	$E_{i j}\left(\alpha, y_{j}\right)$
y_{i}	$E_{i j}\left(y_{i}, \alpha\right)$	$E_{i j}\left(y_{i}, y_{j}\right)$

If we assume that $E_{i j}: \mathcal{L} \times \mathcal{L} \rightarrow \mathbb{R}$ is a metric for each $(i, j) \in \mathcal{E}$, then

$$
E_{i j}(\alpha, \alpha)+E_{i j}\left(y_{i}, y_{j}\right)=E_{i j}\left(y_{i}, y_{j}\right) \leqslant E_{i j}\left(y_{i}, \alpha\right)+E_{i j}\left(\alpha, y_{j}\right),
$$

which means that $E_{i j}$ is regular w.r.t. the labeling $\mathcal{Z}_{\alpha}(\mathbf{y}, \alpha)$.

IN2329 - Probabilistic Graphical Models in Computer Vision

t-links: for all $i \in \mathcal{V}^{\prime} \backslash\{\alpha, \bar{\alpha}\}$

$$
\begin{aligned}
& c(\alpha, i)=E_{i}\left(y_{i}\right)+\sum_{(i, j) \in \mathcal{E}, y_{j}=\alpha} E_{i j}\left(y_{i}, \alpha\right)+\sum_{(j, i) \in \mathcal{E}, y_{j}=\alpha} E_{j i}\left(\alpha, y_{i}\right)+\underbrace{\sum_{C} E_{i j}\left(y_{i}, \alpha\right)}_{(i, j) \in \mathcal{E}, y_{j} \neq \alpha} \\
& c(i, \bar{\alpha})=E_{i}(\alpha)+\underbrace{\sum_{j i} E_{j i}\left(y_{j}, \alpha\right)}_{(j, i) \in \mathcal{E}, y_{j} \neq \alpha}-\underbrace{\sum_{j i} E_{j i}\left(y_{j}, y_{i}\right)}_{(j, i) \in \mathcal{E}, y_{j} \neq \alpha} .
\end{aligned}
$$

n-links: for all $(i, j) \in \mathcal{E}$, where $i, j \in \mathcal{V}^{\prime} \backslash\{\alpha, \bar{\alpha}\}$

$$
c(i, j)=E_{i j}\left(\alpha, y_{j}\right)+E_{i j}\left(y_{i}, \alpha\right)-E_{i j}\left(y_{i}, y_{j}\right) .
$$

The $\alpha-\beta$ swap does not guarantee any closeness to the global minimum. Nevertheless, the local minimum that the α-expansion algorithm will find is at most twice the global minimum y^{*}.
We have already assumed that $E_{i j}$ is a metric for each $(i, j) \in \mathcal{E}$, hence $E_{i j}(\alpha, \beta) \neq 0$ for $\alpha \neq \beta \in \mathcal{L}$. Let us define

$$
c=\max _{(i, j) \in \mathcal{E}}\left(\frac{\max _{\alpha \neq \beta \in \mathcal{L}} E_{i j}(\alpha, \beta)}{\min _{\alpha \neq \beta \in \mathcal{L}} E_{i j}(\alpha, \beta)}\right) .
$$

Theorem 1. Let $\hat{\mathbf{y}}$ be a local minimum when the expansion moves are allowed and \mathbf{y}^{*} be the globally optimal solution. Then $E(\hat{\mathbf{y}}) \leqslant 2 c E\left(\mathbf{y}^{*}\right)$.

Left view

Right view

Given two images (i.e. left and right), an observed 2D point p_{1} on the left image corresponds to a 3D point P that is situated on a line in \mathbb{R}^{3}. This line will be observed as a line on the right image.
P can be determined based on p_{1} and p_{2}. We assume that the pixels p_{1} and p_{2}, corresponding to P, have similar visual appearance.

α-expansion	Stereo matching	Stereo matching			chema	
		Primal-dual LP	Primal-dual principle	Primal-du		

The goal is to reconstruct 3D points according to corresponding pixels. We assume rectified images, which means that the corresponding pixels are situated in horizontal lines according to some displacement.

Left view

Right view

Therefore, we need to search for corresponding points in the same row of both views. We also assume that the pixels p_{1} and p_{2} corresponding to P have similar intensities.

Suppose that we are given two cameras looking at parallel direction. Let $C_{\text {left }}$ be the origin of the coordinate system and assume that the image planes are co-planar and parallel to the x and y axis.

The intersection of the triangle $\triangle\left(C_{\text {left }}, P, C_{\text {right }}\right)$ and the plane including the images planes is the segment $\overline{p_{1} p_{2}}$. Therefore $\overline{p_{1} p_{2}}$ is parallel to the x-axis. For more details you may refer to the course on Computer Vision II: Multiple View Geometry.
IN2329 - Probabilistic Graphical Models in Computer Vision

Energy function

Primal-dual principle

We define $\mathcal{L}=\{1,2, \ldots, D\}$ as the label set, i.e. set of possible horizontal displacement of pixels on the right view), where D is a constant.
Therefore the output domain $\mathcal{Y}=\mathcal{L}^{\mathcal{V}}$ and the energy function has the following form

$$
E(\mathbf{y} ; \mathbf{x})=\sum_{i \in \mathcal{V}} E_{i}\left(y_{i} ; \mathbf{x}\right)+\sum_{(i, j) \in \mathcal{E}} E_{i j}\left(y_{i}, y_{j} ; \mathbf{x}\right),
$$

where \mathbf{x} consists of the images (i.e. left and right view) denoted by $\mathbf{x}^{\text {left }}$ and $\mathbf{x}^{\text {right }}$, respectively.
Unary energies (a.k.a. data terms) E_{i} for all $i \in \mathcal{V}$ are defined as

$$
\left.E_{i}\left(y_{i} ; \mathbf{x}\right)=\min \left(\left|x_{i}^{\text {left }}-x_{i+y_{i}}^{\text {right }}\right|^{2}, K\right)\right),
$$

where K is a constant (e.g., $K=20^{2}$).

Pairwise energies (a.k.a. smooth terms) $E_{i j}$ for all $(i, j) \in \mathcal{E}$ are defined as

$$
E_{i j}\left(y_{i}, y_{j} ; \mathbf{x}\right)=U\left(\left|x_{i}^{\text {left }}-x_{j}^{\text {left }}\right|\right) \cdot \llbracket y_{i} \neq y_{j} \rrbracket,
$$

where

$$
U\left(\left|x_{i}^{\text {left }}-x_{j}^{\text {left }}\right|\right)= \begin{cases}2 C, & \text { if }\left|x_{i}^{\text {left }}-x_{j}^{\text {left }}\right| \leqslant 5 \\ C, & \text { otherwise }\end{cases}
$$

for some constant C.
Note the pairwise energies are defined by weighted Potts-model, which is a metric.

- A binary energy function E consisting of up to pairwise functions is regular, if for each term $E_{i j}$ for all $i<j$ satisfies

$$
E_{i j}(0,0)+E_{i j}(1,1) \leqslant E_{i j}(0,1)+E_{i j}(1,0)
$$

- The minimization of regular energy functions can be achieved via graph cut.
- The multi-label problem for a finite label set \mathcal{L}

$$
E(\mathbf{y} ; \mathbf{x})=\sum_{i \in \mathcal{V}} E_{i}\left(y_{i} ; \mathbf{x}\right)+\sum_{(i, j) \in \mathcal{E}} E_{i j}\left(y_{i}, y_{j} ; \mathbf{x}\right),
$$

can be approximately solved by applying

- $\alpha-\beta$ swap, if $E_{i j}$ is semi-metric;
- α-expansion, if $E_{i j}$ is metric.

Let us assume that $\mathcal{L}=\{1,2,3\}$ and consider the following factor graph example:

Uniqueness: The constraints $\sum_{\alpha \in \mathcal{L}} x_{i: \alpha}=1$ for all $i \in \mathcal{V}$ simply express the fact that each vertex must receive exactly one label.
Consistency: The constraints

$$
\sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta}=x_{j: \beta} \quad \text { and } \quad \sum_{\beta \in \mathcal{L}} x_{i j: \alpha \beta}=x_{i: \alpha} \quad \forall \alpha, \beta \in \mathcal{L},(i, j) \in \mathcal{E}
$$

maintain consistency between variables, i.e. if $x_{i: \alpha}=1$ and $x_{j: \beta}=1$ holds true, then these constraints force $x_{i j: \alpha \beta}=1$ to hold true as well.

The ILP defined before is in general NP-hard. Therefore we deal with the LP relaxation of our ILP. The relaxed LP can be written in standard form as follows:

$$
\min _{x_{i: \alpha}, x_{i j: \alpha \beta}}\langle\mathbf{c}, \mathbf{x}\rangle
$$

subject to $\mathbf{A x}=\mathbf{b}, \mathbf{x} \geqslant 0$.

Left view

Right view

Ground truth

Result of $\alpha-\beta$ swap \quad Result of α-expansion

It is worth noting that α-expansion algorithm generally runs faster than $\alpha-\beta$ swap. There is optimality guarantee only for α-expansion algorithm, however, the two algorithms perform almost the same in many practical applications.

IN2329 - Probabilistic Graphical Models in Computer Vision
6. Primal-dual Schema - 18 / 40

We are generally interested to find a MAP labelling x^{*} :

$$
\mathbf{x}^{*} \in \underset{\mathbf{x} \in \mathcal{L}^{|\mathcal{V}|}}{\operatorname{argmin}} E(\mathbf{x})=\underset{\mathbf{x} \in \mathcal{\mathcal { L }}|\mathcal{V}|}{\operatorname{argmin}}\left\{\sum_{i \in \mathcal{V}} E_{i}\left(x_{i}\right)+\sum_{(i, j) \in \mathcal{E}} w_{i j} \cdot d\left(x_{i}, x_{j}\right)\right\} .
$$

This can be equivalently written as an integer linear program (ILP):

$$
\begin{array}{rll}
\min _{x_{i: \alpha}, x_{i j: \alpha \beta}} \sum_{i \in \mathcal{V}} \sum_{\alpha \in \mathcal{L}} E_{i}(\alpha) x_{i: \alpha} & +\sum_{(i, j) \in \mathcal{E}} w_{i j} \sum_{\alpha, \beta \in \mathcal{L}} d(\alpha, \beta) x_{i j: \alpha \beta} \\
\text { subject to } \quad \sum_{\alpha \in \mathcal{L}} x_{i: \alpha} & =1 \quad \forall i \in \mathcal{V} \\
\sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta} & =x_{j: \beta} & \forall \beta \in \mathcal{L},(i, j) \in \mathcal{E} \\
\sum_{\beta \in \mathcal{L}} x_{i j: \alpha \beta} & =x_{i: \alpha} & \forall \alpha \in \mathcal{L},(i, j) \in \mathcal{E} \\
x_{i: \alpha}, x_{i j: \alpha \beta} \in \mathbb{B} & \forall \alpha, \beta \in \mathcal{L},(i, j) \in \mathcal{E}
\end{array}
$$

$x_{i: \alpha}$ indicates whether vertex i is assigned label α, while $x_{i j: \alpha \beta}$ indicates whether (neighboring) vertices i, j are assigned labels α, β, respectively.

```
IN2329 - Probabilistic Graphical Models in Computer Vision
6. Primal-dual Schema \(-20 / 40\)
```


Primal-dual LP

$$
\min _{x_{i: \alpha}, x_{i j: \alpha \beta}}\langle\mathrm{c}, \mathrm{x}\rangle \quad \text { subject to } \mathrm{Ax}=\mathrm{b}, \mathrm{x} \geqslant \mathbf{0}
$$

We may write $\mathbf{x}=\left[\begin{array}{ll}\mathbf{x}_{1}^{T} & \mathbf{x}_{2}^{T}\end{array}\right]^{T}$, where

$$
\mathbf{x}_{1}=\left[\begin{array}{llllll}
x_{1: 1} & \cdots & x_{1: 3} & x_{2: 1} & \cdots & x_{2: 3}
\end{array}\right]^{T} \in \mathbb{R}^{m n}
$$

where $n=|\mathcal{V}|$ and $m=|\mathcal{L}|$, and

$$
\mathbf{x}_{2}=\left[\begin{array}{lllllll}
x_{12: 11} & \cdots & x_{12: 13} & \cdots & x_{12: 31} & \cdots & x_{12: 33}
\end{array}\right]^{T} \in \mathbb{R}^{|\mathcal{E}| m^{2}}
$$

Similarly, we can write $\mathbf{c}=\left[\begin{array}{ll}\mathbf{c}_{1}^{T} & \mathbf{c}_{2}^{T}\end{array}\right]^{T}$, where

$$
\begin{aligned}
& \mathbf{c}_{1}=\left[\begin{array}{llllll}
E_{1}(1) & \cdots & E_{1}(3) & E_{2}(1) & \cdots & E_{2}(3)
\end{array}\right]^{T} \in \mathbb{R}^{m n} \\
& \mathbf{c}_{2}=\left[\begin{array}{llllll}
w_{12} d(1,1) & \cdots & w_{12} d(1,3) & \cdots & w_{12} d(3,1) & \cdots \\
w_{12} d(3,3)
\end{array}\right]^{T} \in \mathbb{R}^{|\mathcal{E}| m^{2}}
\end{aligned}
$$

Therefore, $\langle\mathbf{c}, \mathbf{x}\rangle=\left\langle\mathbf{c}_{1}, \mathbf{x}_{1}\right\rangle+\left\langle\mathbf{c}_{2}, \mathbf{x}_{2}\right\rangle$.

Hhit LP relaxation: uniqueness constraints *
α-expansion Stereo matching Primal-dual LP Primal-dual principle

Primal-dual schema $\min _{x_{i: \alpha}, x_{i j: \alpha \beta}}\langle\mathbf{c}, \mathbf{x}\rangle \quad$ subject to $\mathbf{A x}=\mathbf{b}, \mathbf{x} \geqslant \mathbf{0}$.

We can write the (uniqueness) constraints $\sum_{\alpha \in \mathcal{L}} x_{i: \alpha}=1$ for all $i \in \mathcal{V}$ as

$$
\underbrace{\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]}_{\mathbf{A}_{11}}\left[\begin{array}{c}
x_{1: 1} \\
\vdots \\
x_{2: 3}
\end{array}\right]=\mathbf{A}_{11} \mathbf{x}_{1}=\mathbf{1}_{n}=: \mathbf{b}_{1}
$$

where $\mathbf{1}_{n} \in \mathbb{R}^{n}$ is the vector of all-ones.

Wht LP relaxation: consistency constraints

 α-expansion Stereo matching Primal-dual LP Primal-dual principle Primal-dual schema$$
\min _{x_{i: \alpha}, x_{i j: \alpha \beta}}\langle\mathbf{c}, \mathbf{x}\rangle \quad \text { subject to } \mathbf{A x}=\mathbf{b}, \mathbf{x} \geqslant \mathbf{0} .
$$

The (consistency) constraints $\sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta}=x_{j: \beta} \Leftrightarrow-x_{j: \beta}+\sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta}=0$ and $\sum_{\beta \in \mathcal{L}} x_{i j: \alpha \beta}=x_{i: \alpha} \Leftrightarrow-x_{i: \alpha}+\sum_{\beta \in \mathcal{L}} x_{i j: \alpha \beta}=0$ can be expressed as

$$
\left.\begin{array}{cccccccccccccccccc}
0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline-1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1: 1} \\
\vdots \\
x_{2: 3} \\
x_{12: 11} \\
\vdots \\
x_{12: 33}
\end{array}\right]=\mathbf{0},
$$

Consider a linear program (given in standard form):

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{n}}\langle\mathbf{c}, \mathbf{x}\rangle \\
& \text { subject to } \mathbf{A x}=\mathbf{b}, \mathbf{x} \geqslant \mathbf{0}
\end{aligned}
$$

for a constraint matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, a constraint vector $\mathbf{b} \in \mathbb{R}^{m}$ and a cost vector $\mathbf{c} \in \mathbb{R}^{n}$.

The dual $L P$ is defined as
$\max _{\mathbf{y} \in \mathbb{R}^{m}}\langle\mathbf{b}, \mathbf{y}\rangle$
subject to $\mathbf{A}^{T} \mathbf{y} \leqslant \mathbf{c}$

For feasible solutions \mathbf{x} and \mathbf{y} weak duality holds:

$$
\langle\mathbf{b}, \mathbf{y}\rangle=\mathbf{b}^{T} \mathbf{y}=\mathbf{x}^{T}\left(\mathbf{A}^{T} \mathbf{y}\right)=\left(\mathbf{y}^{T} \mathbf{A}\right) \mathbf{x} \leqslant \mathbf{c}^{T} \mathbf{x}=\langle\mathbf{c}, \mathbf{x}\rangle
$$

IN2329 - Probabilistic Graphical Models in Computer Vision
 6. Primal-dual Schema $-28 / 40$

Or equivalently, we can formulate the dual LP as

$$
\begin{array}{lll}
\max _{y_{i}, y_{i j: \alpha}, y_{j i: \beta}} \sum_{i \in \mathcal{V}} y_{i} & \\
\text { subject to } \quad y_{i}-\sum_{j \in \mathcal{V},(i, j) \in \mathcal{E}} y_{i j: \alpha} & \leqslant E_{i}(\alpha) \quad \forall i \in \mathcal{V}, \alpha \in \mathcal{L} \\
& \leqslant w_{i j} d(\alpha, \beta) & \forall(i, j) \in \mathcal{E}, \alpha, \beta \in \mathcal{L}
\end{array}
$$

IN2329 - Probabilistic Graphical Models in Computer Vision

We will refer to the variables $y_{i j: \alpha}, y_{j i: \beta}$ as balance variables. Specially, the pair of $y_{i j: \alpha}, y_{j i: \alpha}$ is called conjugate balance variables.
The balls are not static, but may move in pairs through updating pairs of conjugate balance variables as $h_{i}(\alpha)=E_{i}(\alpha)+\sum_{j \in \mathcal{V},(i, j) \in \mathcal{E}} y_{i j: \alpha}$. Therefore, the role of balance variables is to raise or lower labels.

It is due to $y_{i j: \alpha}+y_{j i: \alpha} \leqslant w_{i j} d(\alpha, \alpha)=0 \quad \Rightarrow \quad y_{i j: \alpha} \leqslant-y_{j i: \alpha}$
We will call the variables $y_{i j: x_{i}}$ as active balance variable and use the following notation for the "load" between neighbors i, j, defined as

$$
\operatorname{load}_{i j}=y_{i j: x_{i}}+y_{j i: x_{j}} .
$$

Whal Primal-dual LP for multi-label problem
α-expansion
The (relaxed) primal LP:

$$
\begin{aligned}
& \min _{x_{i: \alpha}, x_{i j: \alpha \beta} \geqslant 0} \sum_{i \in \mathcal{V}} \sum_{\alpha \in \mathcal{L}} E_{i}(\alpha) x_{i: \alpha}+\sum_{(i, j) \in \mathcal{E}} w_{i j} \sum_{\alpha, \beta \in \mathcal{L}} d(\alpha, \beta) x_{i j: \alpha \beta} \\
& \text { subject to } \quad \sum_{\alpha \in \mathcal{L}} x_{i: \alpha}=1 \quad \forall i \in \mathcal{V} \\
& \sum_{\alpha \in \mathcal{L}} x_{i j: \alpha \beta}=x_{j: \beta} \quad \forall \beta \in \mathcal{L},(i, j) \in \mathcal{E} \\
& \sum_{\beta \in \mathcal{L}} x_{i j: \alpha \beta}=x_{i: \alpha} \quad \forall \alpha \in \mathcal{L},(i, j) \in \mathcal{E}
\end{aligned}
$$

The dual LP:

$$
\begin{array}{lll}
\max _{y_{i}, y_{i j: \alpha}, y_{j i: \beta}} \sum_{i \in \mathcal{V}} y_{i} & \\
\text { subject to } y_{i}-\sum_{j \in \mathcal{V}:(i, j) \in \mathcal{E}} y_{i j: \alpha} & \leqslant E_{i}(\alpha) \quad \forall i \in \mathcal{V}, \alpha \in \mathcal{L} \\
& \leqslant w_{i j} d(\alpha, \beta) \quad \forall(i, j) \in \mathcal{E}, \alpha, \beta \in \mathcal{L}
\end{array}
$$

Theorem 2. If x and y are integral-primal and dual feasible solutions satisfying:

$$
\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle
$$

for $\epsilon \geqslant 1$, then x is an ϵ-approximation to the optimal integral solution x^{*}, that is

$$
\left\langle\mathbf{c}, \mathbf{x}^{*}\right\rangle \leqslant\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle \leqslant \epsilon\left\langle\mathbf{c}, \mathbf{x}^{*}\right\rangle .
$$

IN2329 - Probabilistic Graphical Models in Computer Vision

6. Primal-dual Schema -35 / 40

Primal-dual schema

We have learned about primal-dual linear programming relaxation for the multi-labeling problem.

In the next lecture we will learn about the Fast primal-dual algorithm for the multi-labeling problem.

Primal-dual principle

Wh: The relaxed complementary slackness

α-expansion Stereo matching Primal-dual LP Primal-dual principle Primal-dual schema
One way to estimate a pair (\mathbf{x}, \mathbf{y}) satisfying the fundamental inequality

$$
\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle
$$

relies on the complementary slackness principle.
Theorem 3. If the pair (\mathbf{x}, \mathbf{y}) of integral-primal and dual feasible solutions satisfies the so-called relaxed primal complementary slackness conditions:

$$
\forall j:\left(x_{j}>0\right) \quad \Rightarrow \quad \sum_{i} a_{i j} y_{i} \geqslant \frac{c_{j}}{\epsilon_{j}}
$$

then (\mathbf{x}, \mathbf{y}) also satisfies $\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle$ with $\epsilon=\max _{j} \epsilon_{j}$ and therefore \mathbf{x} is an ϵ-approximation to the optimal integral solution x^{*}.

Proof. Exercise.
We aim to satisfy relaxed complementary slackness conditions in order to achieve an ϵ-approximation solution.

IN2329 - Probabilistic Graphical Models in Computer Vision	6. Primal-dual Schema $-36 / 40$

α-expansion	Stereo matching	Primal-dual schema Primal-dual LP Primal-dual principle Primal-dual schema			

Typically, primal-dual ϵ-approximation algorithms construct a sequence $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)_{k=1, \ldots, t}$ of primal and dual solutions until the elements $\mathbf{x}^{t}, \mathbf{y}^{t}$ of the last pair are both feasible and satisfy the relaxed primal complementary slackness conditions, hence the condition $\langle\mathbf{c}, \mathbf{x}\rangle \leqslant \epsilon\langle\mathbf{b}, \mathbf{y}\rangle$ will be also fulfilled

IN2329 - Probabilistic Graphical Models in Computer Vision
6. Primal-dual Schema - 38 / 40

Move-making algorithms

1. Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222-1239, November 2001
2. Sebastian Nowozin and Christoph H. Lampert. Structured prediction and learning in computer vision. Foundations and Trends in Computer Graphics and Vision, 6(3-4), 2010
Primal-dual schema
3. Nikos Komodakis and Georgios Tziritas. Approximate labeling via the primal-dual schema. Technical report, University of Crete, February 2005
4. Nikos Komodakis and Georgios Tziritas. Approximate labeling via graph-cuts based on linear programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8):1436-1453, August 2007
