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7. FastPD & Branch–and–MinCut
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Recall: Primal-dual LP for the multi-label
problem ˚

FastPD PD1 PD2 Branch-and-MinCut
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The (relaxed) primal LP:

min
xi:α,xij:αβě0

ÿ

iPV

ÿ

αPL
Eipαqxi:α `

ÿ

pi,jqPE
wij

ÿ

α,β PL
dpα, βqxij:αβ

subject to
ř

αPL xi:α “ 1 @i P V
ř

αPL xij:αβ “ xj:β @β P L, pi, jq P E
ř

βPL xij:αβ “ xi:α @α P L, pi, jq P E

The dual LP:

max
yi,yij:α,yji:β

ÿ

iPV
yi

subject to yi ´
ÿ

jPV:pi,jqPE
yij:α ď Eipαq @i P V, α P L

yij:α ` yji:β ď wijdpα, βq @pi, jq P E , α, β P L

Recall: Primal-dual schema ˚

FastPD PD1 PD2 Branch-and-MinCut
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Typically, primal-dual ǫ-approximation algorithms construct a sequence
pxk,ykqk“1,...,t of primal and dual solutions until the elements xt, yt of the last
pair are both feasible and satisfy the relaxed primal complementary slackness
conditions, hence the condition xc,xy ď ǫxb,yy will be also fulfilled.

Pseudo-code of the FastPD algorithm ˚

FastPD PD1 PD2 Branch-and-MinCut
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1: rx ys ÐInit Primals Duals()

2: labelChange Ðfalse
3: for all α P L do Ź α-iteration
4: y ÐPreEdit Duals(α,x,y)
5: rx1 y1s ÐUpdate Duals Primals(α,x,y)
6: y1 ÐPostEdit Duals(α,x1,y1)
7: if x1 ‰ x then
8: labelChange Ðtrue
9: end if

10: x Ð x1 and y Ð y1
11: end for
12: if labelChange then
13: goto 2
14: end if
15: yfit ÐDual Fit(y)

PD1

FastPD PD1 PD2 Branch-and-MinCut

Complementary slackness conditions ˚

FastPD PD1 PD2 Branch-and-MinCut
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From now on, in case of Algorithm PD1, we only assume that
dpα, βq “ 0 ô α “ β, and dpα, βq ě 0 (i.e. d is a semi-metric).

The complementary slackness conditions reduces to

yi ´
ÿ

jPV:pi,jqPE
yij:xi ě Eipxiq

ǫ1
ñ yi ě Eipxiq

ǫ1
`

ÿ

jPV:pi,jqPE
yij:xi

yij:xi ` yji:xj ě wijdpxi, xjq
ǫ2

for specific values of ǫ1, ǫ2 ě 1.

If xi “ xj “ α for neighboring pairs pi, jq P E , then

0 “ wijdpα, αq ě yij:α ` yji:α ě wijdpα, αq
ǫ2

“ 0 ,

therefore we get that yij:α “ ´yji:α.



Complementary slackness conditions ˚

FastPD PD1 PD2 Branch-and-MinCut

IN2329 - Probabilistic Graphical Models in Computer Vision 7. FastPD & Branch–and–MinCut – 9 / 48

We have already known that yi “ minαPL hipαq. If ǫ1 “ 1, then we get

yi ě Eipxiq
ǫ1

`
ÿ

jPV:pi,jqPE
yij:xi “ hipxiq .

Therefore
hipxiq “ min

αPL hipαq , (1)

which means that, at each vertex, the active label should have the lowest
height.

If ǫ2 “ ǫapp :“ 2dmax
dmin

, then the complementary condition simply reduces to:

yij:xi ` yji:xj ě wijdpxi, xjq
ǫapp

. (2)

It requires that any two active labels should be raised proportionally to their
“load”.

Feasibility constraints ˚

FastPD PD1 PD2 Branch-and-MinCut
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To ensure feasibility of y, PD1 enforces for any α P L:

yij:α ď wijdmin{2 where dmin “ min
α‰β

dpα, βq (3)

says that there is an upper bound on how much we can raise a label.

Hence, we get the feasibility condition

yij:α ` yji:β ď 2wijdmin{2 “ wijdmin ď wijdpα, βq .

Moreover the algorithm keeps the active balance variables non-negative, that
is yij:xi ě 0 for all i P V.
The proportionality condition (2) will be also fulfilled as yij:xi , yji:xj ě 0 and if

yij:xi “ wijdmin

2 , then

yij:xi ě wijdmin

2

dpxi, xjq
dmax

“ wijdpxi, xjq
2dmax
dmin

“ wijdpxi, xjq
ǫapp

.

Subroutine Init Primals Duals() ˚

FastPD PD1 PD2 Branch-and-MinCut
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1: x is simply initialized by a random label assignment Ź Init primals
2: for all pi, jq P E with xi ‰ xj do Ź Init duals
3: yij:xi Ð wijdpxi, xjq{2 and yji:xi Ð ´wijdpxi, xjq{2
4: yji:xj Ð wijdpxi, xjq{2 and yij:xj Ð ´wijdpxi, xjq{2
5: end for
6: for all i P V do
7: yi Ð minαPL hipαq
8: end for
9: return rx ys

Update primal and dual variables

FastPD PD1 PD2 Branch-and-MinCut
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Dual variables update: Given the current active labels, any non-active label is
raised, until it either reaches the active label, or attains the maximum raise allowed
by the upper bound defined in (3).

Primal variables update: Given the new heights, there might still be vertices
whose active labels are not at the lowest height. For each such vertex i, we select
a non-active label, which is below xi, but has already reached the maximum raise
allowed by the upper bound defined in (3).

The optimal update of the α-heights can be simulated by pushing the maximum
amount of flow through a flow network G1 “ pV Y ts, tu, E 1, c, s, tq.

Graph construction: n-links

FastPD PD1 PD2 Branch-and-MinCut
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For each pi, jq P E , we insert two directed edges pi, jq and pj, iq into E 1.

The flow value fij , fij represent respectively the increase, decrease of balance
variable yij:α:

y1
ij:α “ yij:α ` fij ´ fji and y1

ji:α “ ´y1
ij:α .

According to (3), the capacities capij and capji are set based on

capij ` yij:α “ 1

2
wijdmin “ capji ` yji:α .

Graph construction: n-links

FastPD PD1 PD2 Branch-and-MinCut
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If α is already the active label of i (or j), then label α at i (or j) need not move.

Therefore, y1
ij:α “ yij:α and y1

ji:α “ yji:α, that is

xi “ α or xj “ α ñ capij “ capji “ 0 .

Graph construction: t-links ˚

FastPD PD1 PD2 Branch-and-MinCut
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Each node i P V 1zts, tu connects to either the source node s or the sink node t
(but not to both of them).
There are three possible cases to consider:

Case 1 (hipαq ă hipxiq): we want to raise label α as much as it reaches label xi.
We connect source node s to node i.
Due to the flow conservation property, fi “ ř

jPV:pi,jqPE pfij ´ fjiq assuming the
more intuitive definition of flows (see Lecture 4).
The flow fi through that edge will then represent the total relative raise of label α:

hipαq ` fi “
´
Eipαq `

ÿ

jPV:pi,jqPE
yij:α

¯
`

ÿ

jPV:pi,jqPE
pfij ´ fjiq

“
´
Eipαq `

ÿ

jPV:pi,jqPE
yij:α

¯
`

ÿ

jPV:pi,jqPE

`
y1
ij:α ´ yji:α

˘

“ Eipαq `
ÿ

jPV:pi,jqPE
y1
ij:α “ h1

ipαq .

Graph construction: t-links

FastPD PD1 PD2 Branch-and-MinCut
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We need to raise up the ball corresponding to the label α only as high as the
current active label of i, but not higher than that, we therefore set:

capsi “ hipxiq ´ hipαq .



Graph construction: t-links

FastPD PD1 PD2 Branch-and-MinCut
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Case 2 (hipαq ě hipxiq and c ‰ xi): we can then afford a decrease in the height
of α at i, as long as α remains above xp.

We connect i to the sink node t through directed edge pi, tq.
The flow fi through edge it will equal the total relative decrease in the height of α:

h1
ipαq “ hipαq ´ fi

capit “ hipαq ´ hipxiq .

Graph construction: t-links

FastPD PD1 PD2 Branch-and-MinCut
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Case 3 (α “ xi): we want to keep the height of α fixed at the current iteration.

Note that the capacities of the n-edges for p are set to 0, since i has the active
label. Therefore, fi “ 0 and h1

ij:α “ hij:α.

By convention capij :“ 1.

Reassign rule

FastPD PD1 PD2 Branch-and-MinCut
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Label α will be the new label of i (i.e. x1
i “ α) iff there exists unsaturated path

(i.e. fij ă capij) between the source node s and node i. In all other cases, i keeps
its current label (i.e. x1

i “ xi).

fij ă capij

h1
ipαq ´ hipαq ă hipxiq ´ hipαq

h1
ipαq ă hipxiq “ h1

ipxiq

Subroutine Update Duals Primals(α,x,y) ˚

FastPD PD1 PD2 Branch-and-MinCut
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1: x1 Ð x and y1 Ð y
2: Apply max-flow to G1 and compute flows fi, fij
3: for all pi, jq P E do
4: y1

ij:α Ð yij:α ` fij ´ fji
5: end for
6: for all i P V do
7: xi Ð α ô D unsaturated path s ù i in G1
8: end for
9: return rx1 y1s

Subroutine PostEdit Duals(α,x1,y1) ˚

FastPD PD1 PD2 Branch-and-MinCut
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The goal is to restore all active balance variables yij:xi to be non-negative.

1. x1
i “ α ‰ x1

j : we have capij , yij:α ě 0, therefore y1
ij:α “ capij ` yij:α ě 0 .

2. x1
i “ x1

j “ α: we have y1
ij:α “ ´y1

ji:α, therefore load1
ij “ y1

ij:α ` y1
ji:α “ 0. By

setting y1
ijpαq “ y1

ji:α “ 0 we get load1
ij “ 0 as well.

Note that none of the “load” were altered.

1: function PostEdit Duals(α,x1,y1)
2: for all pi, jq P E with (x1

i “ x1
j “ α) and (y1

ij:α ă 0 or y1
ji:α ă 0) do

3: y1
ij:α Ð 0 and y1

ji:α Ð 0
4: end for
5: for all i P V do
6: y1

i Ð minαPL h1
ipαq

7: end for
8: return y1
9: end function

The APF function ˚

FastPD PD1 PD2 Branch-and-MinCut
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APFx
1,y1 ď APFx,y, where APFx,y is defined as

APFx,y
∆“

ÿ

iPV
hipxiq “

ÿ

iPV

´
Eipxiq `

ÿ

jPV,pi,jqPE
loadx,yij

¯

“
ÿ

iPV
Eipxiq `

ÿ

pi,jqPE
pyij:xi ` yji:xj q

ď
ÿ

iPV
Eipxiq `

ÿ

pi,jqPE
wijdpxi, xjq “ Epxq .

This condition shows that the algorithm terminates (assuming integer capacities),
due to the reassign rule, which ensures that a new active label has always lower
height than the previous active label, i.e. h1

ipx1
iq ď hipxiq.

Summary ˚

FastPD PD1 PD2 Branch-and-MinCut
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In summary, one can see that PD1 always leads to an ǫ-approximate solution:

Theorem 1. The final primal-dual solutions generated by PD1 satisfy

1. hipxiq “ minαPL hipαq for all i P V,
2. xi ‰ xj ñ loadij ě wijdpxi,xjq

ǫapp
for all pi, jq P E ,

3. yij:α ď wijdmin

2 for all pi, jq P E and α P L,
and thus they satisfy the relaxed complementary slackness conditions with ǫ1 “ 1,
ǫ2 “ ǫapp “ 2dmax

dmin
.

PD2

FastPD PD1 PD2 Branch-and-MinCut



Parameterization of the PD2 algorithm

FastPD PD1 PD2 Branch-and-MinCut
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We now assume that d is a metric.

In fact, PD2 represents a family of algorithms parameterized by µ P r 1
ǫapp

, 1s.
Algorithm PD2µ will achieve complementary slackness conditions with

ǫ1
∆“ µǫapp ě 1

ǫapp
ǫapp ě 1 and ǫ2 “ ǫapp .

Algorithm PD1 always generates a feasible dual solution at any of its inner
iterations, whereas PD2µ may allow any such dual solution to become
infeasible.

Dual-fitting: PD2µ ensures that the (probably infeasible) final dual solution is “not
too far away from feasibility”, which practically means that if that solution is
divided by a suitable factor, it will become feasible again.

Complementary slackness conditions ˚

FastPD PD1 PD2 Branch-and-MinCut
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Similarly to Algorithm PD1, the following equalities will hold for i P V

yi “ min
αPL hipαq “ hipxiq ∆“ Eipxiq `

ÿ

iPV,pi,jqPE
yij:xi .

PD2µ generates a series of intermediate pairs satisfying complementary slackness
conditions for ǫ1 ě 1 and ǫ2 ě 1

µ “ 1
1{ǫapp “ ǫapp:

Eipxiq
ǫ1

`
ÿ

iPV,pi,jqPE
yij:xi ď Eipxiq `

ÿ

iPV,pi,jqPE
yij:xi

∆“ hipxiq “ yi @i P V .

wijdpxi, xjq
ǫ2

ď µ ¨ wij ¨ dpxi, xjq “ loadx,yij @pi, jq P E .

Like PD1, PD2µ also maintains non-negativity of active balance variables.

Dual fitting

FastPD PD1 PD2 Branch-and-MinCut
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Instead of the feasibility conditions yij:α ` yji:β ď wijdpα, βq, PD2µ maintains the
conditions

yij:α ` yji:β ď 2µwijdmax @pi, jq P E , @α, β P L .

Therefore, the dual solution of the last intermediate pair may be infeasible.
However, these conditions ensure that the last dual solution y, is not “too far away
from feasibility”. By replacing y with yfit “ y

µǫapp
we get that

yfitij:α ` yfitji:β “ yij:α ` yji:β
µǫapp

ď 2µwijdmax

µǫapp
“ 2µwijdmax

µ2dmax{dmin
“ wijdminď wijdpα, βq.

This means that yfit is feasible.

1: function Dual Fit(y)
2: return yfit Ð y

µǫapp
3: end function

Update primal and dual variables

FastPD PD1 PD2 Branch-and-MinCut

IN2329 - Probabilistic Graphical Models in Computer Vision 7. FastPD & Branch–and–MinCut – 28 / 48

The main/only difference in the subroutine Update Duals Primals(α,x,y) is
the definition of the capacities corresponding to the n-edges. More precisely,
assuming an α-iteration, where xi “ β ‰ α and xj “ γ ‰ α for a given pi, jq P E :

capij “ µwijpdpβ, αq ` dpα, γq ´ dpβ, γqq ě 0 , (4)

capji “ 0 .

All the capacities in the flow network must be non-negative. This motivates that d
must be a metric.

By applying loadx,yij “ yij:β ` yji:γ “ µwijdpβ, γq one can get

y1
ij:α “ yij:α ` capij “ yij:α ` µwijpdpβ, αq ` dpα, γq ´ dpβ, γqq

“ yij:α ` pyij:β ` yji:αq ` µwijdpα, γq ´ pyij:β ` yji:γq “ µwijdpα, γq ´ yji:γ ,

which ensures that
loadx,yij “ yij:α ` yji:γ “ `

µwijdpα, γq ´ yji:γ
˘ ` yji:γ “ µwijdpα, γq .

Subroutine PreEdit Duals(α,x,y) ˚

FastPD PD1 PD2 Branch-and-MinCut
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The role of this routine is to edit current solution y, before the subroutine
Update Duals Primals(α,x), so that

loadx,yij “ yij:α ` yji:γ “ µwijdpα, γq .
1: function PreEdit Duals(α,x,y)
2: for all pi, jq P E with xi ‰ α, xj ‰ α do
3: yij:α Ð µwijdpα, γq ´ yji:γ
4: yji:α Ð yji:γ ´ µwijdpα, γq
5: end for
6: return y
7: end function

Equivalence of PD2µ“1 and α-expansion

FastPD PD1 PD2 Branch-and-MinCut
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One can show that PD2µ“1 indeed generates an ǫapp solution.

If µ “ 1, then loadx,yij “ wijdpxi, xjq. It can be shown that APFx,y “ Epxq,
whereas in any other case APFx,y ď Epxq.
If µ ă 1, then the primal (dual) objective function necessarily decreases (increases)
per iteration. Instead, APF constantly decreases.

Recall that APF is the sum of active labels’ heights and PD2µ“1 always tries to
choose the lowest label among xi and α. During an α-iteration, PD2µ“1 chooses
an x1 that minimizes APF with respect to any other α-expansion x̄ of current
solution x.

Theorem 2. Let px1,y1q denote the next primal-dual pair due to an α-iteration
and let x̄ denote α-expansion of the current primal. Then

Epx1q “ APFx
1,y1 ď APFx̄,y

1 ď Epx̄q .

Epx1q ď Epx̄q shows that the α-expansion algorithm is equivalent to PD2µ“1.

Results: Stereo matching ˚

FastPD PD1 PD2 Branch-and-MinCut
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Original (left) PD1 PD2µ“1 with Potts

Remark: By modifying the Algorithm PD2µ“1, one could get Algorithm PD3, which
can be applied even if d is a non-metric function.

Distance dpα, βq ǫPD1
app ǫ

PD2µ“1
app ǫPD3a

app ǫPD3b
app ǫPD3c

app ǫapp
Jα ‰ βK 1.0104 1.0058 1.0058 1.0058 1.0058 2
minp5, |α ´ β|q 1.0226 1.0104 1.0104 1.0104 1.0104 10
minp5, |α ´ β|2q 1.0280 - 1.0143 1.0158 1.0183 10

Branch-and-MinCut

FastPD PD1 PD2 Branch-and-MinCut



Introduction

FastPD PD1 PD2 Branch-and-MinCut
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We address the problem of binary image segmentation, where we also consider
non-local parameters that are known a priori.

For example, one can assume prior knowledge about the shape of the foreground
segment or the color distribution of the foreground and/or background.

Let us consider an undirected graphical model G “ pV, Eq, where V is the set of
pixels and E consists of 8-connected pairs of pixels. We define the energy function
E : BV ˆ Ω Ñ R for non-local parameter ω P Ω:

Epy, ωq “ Cpωq `
ÿ

iPV
F ipωq ¨ yi `

ÿ

iPV
Bipωq ¨ p1 ´ yiq `

ÿ

pi,jqPE
P ijpωq ¨ |yi ´ yj | ,

where Cpωq is a constant energy w.r.t. y, and F ipωq and Bipωq are the unary
energies defining the cost of assigning the pixel i to the foreground and to the
background, respectively. P ijpωq P R`

0 is non-negative for each pi, jq P E
ensuring the tractability of Epx, ωq.

Globally optimal segmentation ˚

FastPD PD1 PD2 Branch-and-MinCut
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The segmentation is given by a binary labeling y P BV “ t0, 1uV , where 1 and 0
denote the background and the foreground, respectively. We also assume that the
non-local parameter ω P Ω are taken from a discrete set.

Shape priors can be encoded as a product space of various poses and deformations
of the template, while color priors will correspond to the set of parametric color
distributions.

The goal is to achieve a globally optimal segmentation under non-local priors.
The applied optimization method relies on two techniques: branch-and-bound
and graph cuts.

Although a global minimum can be achieved, the worst case complexity of the
method is large (essentially, the same as the exhaustive search over the space of
non-local parameters).

An alternative way to solve the problem is to apply alternating minimization.

Lower bound

FastPD PD1 PD2 Branch-and-MinCut
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Let LpΩq denote the lower bound for Epy, ωq over BV ˆ Ω:

min
yPBV ,ωPΩ

Epy, ωq

“ min
yPBV ,ωPΩ

!
Cpωq `

ÿ

iPV
F ipωq ¨ yi `

ÿ

iPV
Bipωq ¨ p1 ´ yiq `

ÿ

pi,jqPE
P ijpωq ¨ |yi ´ yj |

)

ě min
yPBV

!
min
ωPΩ Cpωq `

ÿ

iPV
min
ωPΩ F ipωq ¨ yi `

ÿ

iPV
min
ωPΩ Bipωq ¨ p1 ´ yiq`

ÿ

pi,jqPE
min
ωPΩ P ijpωq ¨ |yi ´ yj |

)

“ min
yPBV

!
CΩ `

ÿ

iPV
F i
Ωpωq ¨ yi `

ÿ

iPV
Bi

Ωpωq ¨ p1 ´ yiq `
ÿ

pi,jqPE
P ij
Ω pωq ¨ |yi ´ yj |

)

“LpΩq .

CΩ, F
i
Ω, B

i
Ω and P ij

Ω denote the minima of Cpωq, F ipωq, Bipωq and P ijpωq,
respectively, over ω P Ω and they are referred to as aggregated energies.

Monotonicity

FastPD PD1 PD2 Branch-and-MinCut
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Suppose Ω1 Ă Ω2, then the inequality LpΩ1q ě LpΩ2q holds.

Proof. Let us define Apy,Ωq as

Apy,Ωq ∆“min
ωPΩ Cpωq `

ÿ

iPV
min
ωPΩ F ipωq ¨ yi `

ÿ

iPV
min
ωPΩ Bipωq ¨ p1 ´ yiq

`
ÿ

pi,jqPE
min
ωPΩ P ijpωq ¨ |yi ´ yj | .

Assume Ω1 Ă Ω2. Then, for any y P BV

Apy,Ω1q
“ min

ωPΩ1

Cpωq`
ÿ

iPV
min
ωPΩ1

F ipωqyi`
ÿ

iPV
min
ωPΩ1

Bipωqp1 ´ yiq`
ÿ

pp,qqPE
min
ωPΩ1

P ijpωq|yi ´ yj |

ě min
ωPΩ2

Cpωq`
ÿ

iPV
min
ωPΩ2

F ipωqyi`
ÿ

iPV
min
ωPΩ2

Bipωqp1 ´ yiq`
ÿ

pi,jqPE
min
ωPΩ2

P ijpωq|yi ´ yj |

“ Apy,Ω2q . (5)

Monotonicity

FastPD PD1 PD2 Branch-and-MinCut
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Proof. Continued

Note that LpΩq ∆“ minyPBV Apy,Ωq.
Let y1̊ P argminyPBV Apy,Ω1q and y2̊ P argminyPBV Apy,Ω2q, then due to the
monotonicity for Apy,Ωq with respect to Ω (5), we get that

LpΩ1q ∆“ Apy1̊ ,Ω1q ě Apy1̊ ,Ω2q ě Apy2̊ ,Ω2q ∆“ LpΩ2q .

Computability and tightness
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Computability: the lower bound LpΩq equals the minimum of a regular function,
which can be globally minimized via graph-cuts.

Tightness: for a singleton Ω “ tωu (i.e. |Ω| “ 1) the bound LpΩq is tight, that is

Lptωuq “ min
yPBV

Epy, ωq .

Best-first branch-and-bound optimization
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Source: Lempitsky et al.: Branch–and–MinCut: Global optimization for image segmentation with high–level–priors. JMIV, 2012.

The discrete domain Ω can be hierarchically clustered and the binary tree of its
subregions can be considered.

At each step the active node with the smallest lower bound is removed from the
active front, while two of its children are added to the active front (due to
monotonicity property they have higher or equal lower bounds).

Best-first branch-and-bound optimization
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If the active node with the smallest lower bound turns out to be a leaf ω1 and y1 is
the corresponding optimal segmentation, then Epy1, ω1q “ Lpω1q due to the
tightness property. Consequently, py1, ω1q is a global minimum.

Remark that in worst-case any optimization has to search exhaustively over Ω.



Pseudo code of Branch-And-Mincut ˚
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1: Front Ð H Ź initializing the priority queue
2:

“
C0, tF i

0u, tBi
0u, tP ij

0 u‰ ÐGetAggregEnergies(Ω0)

3: LB0 ÐGetMaxFlowValue(tF i
0u,tBi

0u,tP ij
0 u)`C0

4: Front.InsertWithPriority(Ω0,´LB0)

5: while true do Ź advancing front
6: Ω Ð Front.PullHighestPriorityElement()
7: if IsSingleton(Ω) then Ź global minimum found

8: ω Ð Ω
9:

“
C, tF iu, tBiu, tP iju‰ ÐGetAggregEnergies(ω)

10: x ÐFindMinimumViaMincut(tF iu,tBiu,tP iju)
11: return px, ωq
12: end if

13: rΩ1,Ω2s ÐGetChildrenSubdomains(Ω)
14:

“
C1, tF i

1u, tBi
1u, tP ij

1 u‰ ÐGetAggregEnergies(Ω1)

15: LB1 ÐGetMaxFlowValue(tF i
1u,tBi

1u,tP ij
1 u)`C1

16: Front.InsertWithPriority(Ω1,´LB1)

17:
“
C2, tF i

2u, tBi
2u, tP ij

2 u‰ ÐGetAggregEnergies(Ω2)

18: LB2 ÐGetMaxFlowValue(tF i
2u,tBi

2u,tP ij
2 u)`C2

19: Front.InsertWithPriority(Ω2,´LB2)

20: end while

Segmentation with shape priors
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The prior is defined by the set of exemplar binary segmentations txω | ω P Ωu,
where Ω is a discrete set indexing the exemplar segmentations.

We define a joint prior over the segmentation and the non-local parameter:

Epriorpy, ωq “
ÿ

iPV
p1 ´ xωi q ¨ yi `

ÿ

iPV
xωi ¨ p1 ´ yiq .

This encourages the segmentation y to be close in the Hamming-distance
(dHpa,bq “ 1

N

řN
i“1Jai ‰ biK) to one of the exemplar shapes.

The segmentation energy may be defined by adding a standard contrast-sensitive
Potts-model for λ, σ ą 0:

Epy, ωq “ Epriorpy, ωq ` λ
ÿ

pi,jqPE

e´ }Ii´Ij}
σ

|i ´ j| ¨ |yi ´ yj | ,

where Ii denotes RGB colors of the pixel i.

Parameterization:
multiple templates ˆ translations
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The shape prior is given by a set of templates, whereas each template can be
located anywhere within the image.

Ω “ ∆ ˆ Θ, where

■ the set ∆ indexes the set of all exemplar segmentations xδ and
■ Θ corresponds to translations.

Any exemplar segmentation xω for ω “ pδ, θq is then defined as some exemplar
segmentation xδ centered at the origin and then translated by the shift θ.

Clustering tree
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Source: Lempitsky et al.: Branch–and–MinCut: Global optimization for image segmentation with high–level–priors. JMIV, 2012.

For ∆ we use agglomerative bottom-up clustering resulting in a (binary) clustering
tree T∆ “ t∆ “ ∆0,∆1, . . . ,∆Nu.
To build a clustering tree for Θ, we recursively split along the “longer” dimension.
This leads to a (binary) tree TΘ “ tΘ “ Θ0,Θ1, . . . ,ΘNu.

Branch operation
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Each nodeset Ωt in the combined tree is defined by a pair ∆t ˆ Θt.

The looseness of a nodeset Ωt is defined as the number of pixels that change their
mask value under different shapes in Ωt (i.e. neither background nor foreground):

ΛpΩtq “ |ti | Dω1, ω2 : x
ω1
i “ 0 and xω2

i “ 1u| .
The tree is built in a recursive top-down fashion as follows.

We start by creating a root nodeset Ω0 “ ∆0 ˆ Θ0. Given a nodeset Ωt “ ∆t ˆΘt

we consider (recursively) two possible splits:

1. split along the shape dimension or
2. split along the shift dimension.

The split that minimizes the sum of loosenesses is preferred.

The recursion stops when the leaf level is reached within both the shape and the
shift trees.

Results ˚
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Source: Lempitsky et al.: Branch–and–MinCut: Global optimization for image segmentation with high–level–priors. JMIV, 2012.

Yellow: global minimum of E Blue: feature-based car detector Red: global minimum of

the combination of E with detection results (detection is included as a constant potential)

The prior set ∆ was built by manual segmentation of 60 training images coming
with the dataset.

Summary ˚
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■ Primal-dual schema for the multi-labeling problem:

Epyq “
ÿ

iPV
Eipyiq `

ÿ

pi,jqPE
wij ¨ dpyi, yjq

◆ PD1: d is a semi-metric
◆ PD2: d is a metric (PD2µ “ 1 is equivalent to α-expansion)
◆ PD3: d is a non-metric function (this case has not been discussed)

■ For binary image segmentation we learned a global optimal solution, based
on branch and bound optimization, when we are provided with (shape) prior
information.

In the next lecture we will learn about exact inference (probabilistic and MAP)
on tree structured factor graphs.
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