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8. Belief Propagation

Recall: Inference *

Sum-—product algorithm Max—sum algorithm Loopy belief propagation
Inference means the procedure to estimate the probability distribution, encoded
by a graphical model, for a given data (or observation).
Assume we are given a factor graph G = (V,£’, F) and the observation x.

B Maximum A Posteriori (MAP) inference: find the state y* € J of
maximum probability,

p(y | x) = argmin E(y; x) .
yey

m Probabilistic inference: find the value of the partition function Z(x) and the
marginal distributions up(yr) for each factor F € F,

Z(x) = ) exp(~E(y;x)) ,

yey
pr(yr) =plyr | x) .
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Agenda for today’s lecture *
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Today we are going to learn about belief propagation to perform exact inference

on graphical models having tree structure.

Reminder: a tree is a connected and acyclic graph.

B Probabilistic inference: Sum-product algorithm
m  MAP inference: Max-sum algorithm

We also extend belief propagation for general factor graphs, which results in an
approximate inference.
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Probabilistic inference on chains
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Assume that we are given the following factor graph and a corresponding en
function E(y), where Y = Y; x Y X Y x V.

O—a—)—=—()—=—

We want to compute p(y) for any y € Y by making use of the factorization

DY) = 5 D~ B(¥) = 5 xp(~Ba(ui 7)) oxp(~ B (5, ) xp(~ Byt 0)-

Problem: we also need to calculate the partition function

z=Y, Ey)= > > > > exp(—Eyi,vjukm))

yey Yi€Yi Y;€Y; yk€Vk YIE

which looks expensive (the sum has |Vi| - |V;] - |Vi| - [Vi] terms).
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Sum-—product algorithm

Partition function
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)—=—() (—=—

We can expand the partition function as

Z=73 2 2 2 exp(=Blyiyi e w)

yi€Yi y;i€Y; yreVe yie

=3 2 X GXP(* (Ea(yi,ys) + Enlys, ) + E(’(yk-yz)))
yi€Yi y;i€Y; yreVe yie

=0 D0 D0 D exp(—Ea(yi, ) exp(—Ep(y;, yk) exp(—Ec (yk, w))
Yi€Yi Y;€Y; yk€Vk YIEVI

= > D) exp(—Ealyinyy) Y, exp(=En(y;,m) Y, exp(—Ec(ye,w)) -

yi€Yi y;€Y;5 €k YEVL
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_Elimination
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Inference on trees
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TB-Y; € RYi TCoY;, € RYk

Loopy belief propagation
TASY; e RYi
— ~ <+
A B C

®
Note that we can successively eliminate variables, that is

Z=731 > exp(—Baly;) Y, exp(—En(y;,u) Y, exp(—Ec(ye,u)

Yi€Yi y;€Y) YkEVk YNEN

re—yy (Yrk)
k

= > > exp(—Ealyi,y;) Y, exp(—En(yj,ye))ro—y, (u)

yi€Yi y;€Yj YkEVk
TB-v;(y5)
= D7 D) ed(—Ealiy))rsy, () = D) rasvi(ui) -
Yi€Yi Y;€Y; Yi€Yi

ra-y; (i)
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Inference on trees (cont.)
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Now we are assuming a tree-structured factor graph and applying the same
elimination procedure as before.

re—y; (Y;)

Z=3" Y exp(—=Ealyi,y))av,-a(y;)
i€V Y€V

rasy; (yi)

= D ra-n () -

yi€Yi

IN2329 - Probabilistic Graphical Models in Computer Vision 8. Belief propagation - 11 / 35

Factor-to-variable message
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2. Factor-to-variable message rr_,y, € RY: is given by

qYl—’F(y;) ]

exp(—Er(yr) ]

IEN(F)\(3)

reovi(y) = ),
YrEVF,
vi=yi

where N(F) = {ie V : (i, F) € £'} denotes the set of variables adjacent to F.
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Message scheduling on trees
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Now we are assuming a tree-structured factor graph and are applying the same
elimination procedure as before.

(=
2= exp(~Ealyiys) Y exp(—Enlys ) Y] exp(—Ec(y;w)

Yi€Yi Y€V YkEVk YIEN

TB-v; (U5) ro—y; (y5)

= >0 > exp(—Ea(i,y) sy, ()re -y, (u))
—_—

Yi€i y;€Y;
av;—a(y;)

= >0 ) ep(—Ealyiv;)av,-a(y))
Yi€Yi y;€Y;
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Messages
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Message: pair of vectors at each factor graph edge (i, F') € £'.

TFY;

qy;—F
1. Variable-to-factor message gy, € RV is rASY, av,—>F
. 88 qi~F AR s
given by
B F
avi-F(Yi) = Ty (Yi) u TB-Y;

FreM@i)\{F}
where M (i) = {F € F : (i, F) € £'} denotes
the set of factors adjacent to Y.
2. Factor-to-variable message: 75y, € RV,
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Message scheduling
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One can note that the message updates depend on each other.

reeviw) = Y, [epEreyr) [ aevier() (1)
YREVFR, leN(F)\{i}
Yi=yi

wvi-rw) =[] reov) @)
FreM(i)\{F}

The messages that do not depend on previous computation are the following.

B The factor-to-variable messages in which no other variable is adjacent to the
factor, that is the product in (1) will be empty.

B The variable-to-factor messages in which no other factor is adjacent to the
variable, that is the product in (2) is empty and the message will be one.
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Inference result:ipartition function 7
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For tree-structured factor graphs there always exist at least one such message that
can be computed initially, hence all the dependencies can be resolved.

Source: Nowozin and Lampert. Structured Learning and Prediction. 2011

1. Select one variable node as root of the tree (e.g., Yi,)
2. Compute leaf-to-root messages (e.g., by applying depth-first-search)
3. Compute root-to-leaf messages (reverse order as before)

Partition function is evaluated at the (root) node ¢

Z=3 1] rrevi(m).

yi€Yi FeM (i)

o

/"BHY/ Vcﬁy,
AKX
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Inference result: the marginals yp(yr)
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Optimality and complexity *
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The marginal distribution for each factor can be computed as

priyr) 2 Y py) = Y. %GXP(_ZEH(Y}{))

y'ey, y'ey, HeF
Yr=yr Yr=yr
1
=5 op(-Eryr) Y, e Y, —Eulyn)
ye X Ym HeF\{F}
HeF\(F}
1
=7 exp(=Er(yr)) ‘ [T avierm)-
EN(F)

qYL—-F; F

(IYJQF'.’ ‘.' v, —F
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Max—sum algorithm

MARP inference on trees
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Now we are assuming a tree-structured factor graph and applying an elimination
procedure as before.

rc-y; (Y5)
max Y —FEp(yr) =max—Ea(yi,y;) — Es(yj, ux) — Ec(yj, u)
yey FeF vey

=max —E4(yi,y;) + max —Ep(y;, yx) + max —Ec(yj, w)
Yi Y5 Yk i

r5-y; () re—v; (v5)
=max —Ea(yi, y;) + rp-v; (yj) + ro—y; (y5)
i4Yj -

ay;—a(y;)
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Messages
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Assume a tree-structured factor graph. If the messages are computed based on
depth-first search order for the sum—product algorithm, then it converges after 2|V|
iterations and provides the exact marginals.

If |Vi| < K for all i € V, then the complexity of the algorithm O(|V| - K¥), where
L= maxXpger |N(F)‘

reovw) = Y, |ep(—Ervr) [ av-r))
VheVr, JeN(P)\i}
Yi=yi

Note that the complexity of the naive way is O(K!V1).

Reminder: Assuming f,g : R — R, the notation f(z) = O(g(x)) means that there
exists C' > 0 and zg € R such that |f(z)| < C|g(z)]| for all z > z¢.
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MAR: inference
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* 1. ~
y* € argmaxp(y) = argmax —p(y) = argmaxp(y) .
yey yey yey

Similar to the sum—-product algorithm one can obtain the so-called max—sum
algorithm to solve the above maximization.

By applying the In function, we have
Inmax p(y) = maxInp
maxp(y) =maxnp(y)

=maxIn H exp(—Er(yr))

Y e
=max > —Er(yr) -
yey FeF

MAP inference on trees (cont.)
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Now we are assuming a tree-structured factor graph and applying an elimination
procedure as before.

Y;

rc. »\,(,ﬁ/,)

max Y —Ep(yr) =maxmax —Ea(yi,y;) + qv,»a(y;) = maxra .y, ()
yey Fer Yi Y Yi

rasy; (yi)

The solution is then obtained as:
*
yi € argmax .y, (vi),
i

i € argmax —Ep(yf,up), vy € argmax —Ec(y}, u) -
Yk Y

y; € argmax —Ea(y]', ) + qv;—-a(Y5)
Yj
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Choosing an optimal state
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The messages become as follows

wvior(y) = Y, rEevi(m)
FreM(i)\{F}

reovi(y) = max | —Bp(yp)+ Y. avier(y))
Ve SIrs IEN(F)\(3)
Yi=Yi
The max-sum algorithm provides exact MAP inference for tree-structured factor
graphs.

After calculating the messages, the following back-tracking algorithm is applied
for choosing an optimal y*.

1. Initialize the procedure at the root node (Y;) by choosing any

yf € argmax max p(y’),
vieY; Y'eEVyi=vyi

and set Z = {i}.
2. Based on (reverse) depth-first search order, for each j € V\T

(2) choose a configuration y7 at the node Y; such that

Y € argmax  max ),
f
yey; YV
Y=y,
yi=y¥ VieT

(b) update Z =T u {j}.
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Sum-product_and: Max—sum comparison *
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B Sum-product algorithm

wvi-rw) =[]

FreM@\F}

Ty (Yi)

resy, (W) = )

YReVP,
Yi=vYi

[ avier()

leN(F)\{i}

exp(—Er(yr))

B Max—sum algorithm

wviorly) = )

FreM(i)\{F}

TFy; (Yi)

reovi(y) = max | —Ee(yp)+ Y, avier(y)
VP, IeN(F)\(i}
Yi=Yi

__Example *
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Ep(yx) Ec(yk, yt)

Yk Yk Yk Y

01 01| [0 1 01
0/10 o[o-1] |1]|05 0] 0 05
Yi1lo1||¥1]00 Y1) 05 0

Let us chose the node Y; as root. We calculate the messages for the max-sum
algorithm from leaf-to-root direction in a depth-first search order as follows.

L. qy-c(0) = qv—c(1) =0
2. 1oy, (0)=maxy (0,13 {—Ec(0, y)+ay,-c(0) }=maxye (0,13~ Ec (0, y)=0
ro—y, (V)=maxyc o, {—Ec (1, y)+ayi-o(1)}=maxy,c 0,1y~ Ec (1, 4)=0
3. TB*,yk(O) =-1
rpoy, (1) = —0.5
4. qykﬁA(O) = ’I'Bﬂyk(o) + Tcayk(o) =—-1+0=-1
qykﬁ,q(].) = ’I'Bﬁyk(l) + Tcﬁyk(l) =—-05+0=-05
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Example (cont.) *

Sum-—product algorithm Max—sum algorithm Loopy belief propagation

5. qy;-a(0) = qv;-a(1) =0
6. Tany;(0)=max, 4 ci01}{—Ea(0,y;,yk) +av;-a(y;) +avi>a(ye)} =—0.5
rasy; (1) =maxy, . co.13{—Ea(L, yj. yk) +av,-a(y;) +avi—alyr)} =0.5

In order to calculate the maximal state y* we apply back-tracking

1.y e argmax, ¢(o,1y ra-v; (%) = {1}

2. yj e argmaxy, maxy, 0.3 {—Ea(l, 55, 9) + avialy)} = {0}

3. yi e argmaxy, 013 {—Fa(L,0,yx) + r5-v; (yr) + re—vi (i)} = {1}
4.y e argmaxy oy {—Ec(l,y) + re-y, (1)} = {1}
Therefore, the optimal state y* = (yf,y}‘,y,’g,yl*) =(1,0,1,1).

Message passing in cyclic graphs

Sum-—product algorithm Max-sum algorithm Loopy belief propagation

When the graph has cycles, then there is no well-defined leaf—to—root order.
However, one can apply message passing on cyclic graphs, which results in loopy
belief propagation.

Source: Nowozin and Lampert. Structured Learning and Prediction. 2011.
1. Initialize all messages as constant 1
Pass factor-to—variables and variables—to—factor messages alternately until
convergence
Upon convergence, treat beliefs ;1 as approximate marginals
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Beliefs
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Loopy belief propagation

Messages
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The factor—to-variable messages r_,y, remain well-defined and are computed
as before:

reeviw) = Y |e(=Er(yp) []  av-r(y))
YREVE, JEN(F)\{i}
Yi=yi

The variable—to—factor messages are simply normalized at every iteration as
follows:
[ eentpgry re—v (4i)

Zygeyi HF’EM(i)\{F} TEoy; (Y))

avi-F(Yi) =
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Beliefs (cont.) *
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The approximate marginals, i.e.beliefs, are computed as before, but now a
factor-specific normalization constant zp is also used.

The factor marginals are given by

1
wr(yr) = Z_eXP(_EF(yF)) H avi—F(¥i) s
F ieN(F)

where the factor specific normalization constant is given by

=, exp(=Eryr)) [] avi-r()-

YyrEVF i€N(F)

In addition to the factor marginals the algorithm also computes the variable
marginals in a similar fashion.

1
pilyi) = — [T re—vw),
Y FreM(i)

where the normalizing constant is given by

[T reviw).

yi€Vi F'eM (i)

Zi =

Since the local normalization constant zp differs at each factor for loopy belief
propagation, the exact value of the normalizing constant Z cannot be directly
calculated. Instead, an approximation to the partition function can be computed.
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Remarks on loopy belief propagation
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_Summary *
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Source: Nowozin and Lampert. Structured Learning and Prediction. 2011.

Loopy belief propagation is very popular, but has some problems:

B It might not converge (e.g., it can oscillate).
B Even if it does, the computed probabilities are only approximate.
B If there is a single cycle only in the graph, then it converges.
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B We have discussed exact inference methods on tree-structured graphical
models

@ Probabilistic inference: Sum-product algorithm
& MAP inference: Max-sum algorithm

B For general factor graphs: Loopy belief propagation

In the next lecture we will learn about
B  Human-pose estimation

Source: Nowozin and Lampert. Structured Learning and Prediction. 2011.
B Mean-field approximation: probabilistic inference via optimization (a.k.a.
variational inference)
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