Probabilistic Graphical Models in Computer Vision (IN2329)

Csaba Domokos

Summer Semester 2017

8. Belief Propagation

Vitr. Overview of the course *

White

Recall: Inference *

Inference means the procedure to estimate the probability distribution, encoded by a graphical model, for a given data (or observation).

Assume we are given a factor graph $G = (\mathcal{V}, \mathcal{E}', \mathcal{F})$ and the observation \mathbf{x} .

Maximum A Posteriori (MAP) inference: find the state $y^* \in \mathcal{Y}$ of maximum probability,

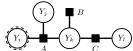
$$\mathbf{y}^* \in \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}} p(\mathbf{y} \mid \mathbf{x}) = \operatorname*{argmin}_{\mathbf{y} \in \mathcal{Y}} E(\mathbf{y}; \mathbf{x}) \ .$$

Probabilistic inference: find the value of the partition function $Z(\mathbf{x})$ and the marginal distributions $\mu_F(\mathbf{y}_F)$ for each factor $F \in \mathcal{F}$,

$$\begin{split} Z(\mathbf{x}) &= \sum_{\mathbf{y} \in \mathcal{Y}} \exp(-E(\mathbf{y}; \mathbf{x})) \;, \\ \mu_F(\mathbf{y}_F) &= p(\mathbf{y}_F \mid \mathbf{x}) \;. \end{split}$$

Agenda for today's lecture *

Today we are going to learn about belief propagation to perform exact inference on graphical models having tree structure.



Reminder: a tree is a connected and acyclic graph.

- Probabilistic inference: Sum-product algorithm
- MAP inference: Max-sum algorithm

We also extend belief propagation for general factor graphs, which results in an approximate inference.

Probabilistic inference on chains

Assume that we are given the following factor graph and a corresponding energy function $E(\mathbf{y})$, where $\mathcal{Y} = \mathcal{Y}_i \times \mathcal{Y}_j \times \mathcal{Y}_k \times \mathcal{Y}_l$.

We want to compute $p(\mathbf{y})$ for any $\mathbf{y} \in \mathcal{Y}$ by making use of the factorization

$$p(\mathbf{y}) = \frac{1}{Z} \exp(-E(\mathbf{y})) = \frac{1}{Z} \exp(-E_A(y_i, y_j)) \exp(-E_B(y_j, y_k)) \exp(-E_C(y_k, y_l)).$$

Problem: we also need to calculate the partition function

$$Z = \sum_{\mathbf{y} \in \mathcal{Y}} \exp(-E(\mathbf{y})) = \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \sum_{y_k \in \mathcal{Y}_k} \sum_{y_l \in \mathcal{Y}_l} \exp(-E(y_i, y_j, y_k, y_l)) ,$$

which looks expensive (the sum has $|\mathcal{Y}_i| \cdot |\mathcal{Y}_i| \cdot |\mathcal{Y}_k| \cdot |\mathcal{Y}_l|$ terms).

Partition function

We can expand the partition function as

$$Z = \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \sum_{y_k \in \mathcal{Y}_k} \sum_{y_l \in \mathcal{Y}_l} \exp(-E(y_i, y_j, y_k, y_l))$$

$$= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \sum_{y_k \in \mathcal{Y}_k} \sum_{y_l \in \mathcal{Y}_l} \exp\left(-\left(E_A(y_i, y_j) + E_B(y_j, y_k) + E_C(y_k, y_l)\right)\right)$$

$$= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \sum_{y_k \in \mathcal{Y}_k} \sum_{y_l \in \mathcal{Y}_l} \exp(-E_A(y_i, y_j)) \exp(-E_B(y_j, y_k)) \exp(-E_C(y_k, y_l))$$

 $= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) \sum_{y_k \in \mathcal{Y}_k} \exp(-E_B(y_j, y_k)) \sum_{y_l \in \mathcal{Y}_l} \exp(-E_C(y_k, y_l)).$

$$Z = \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) \sum_{y_k \in \mathcal{Y}_k} \exp(-E_B(y_j, y_k)) \underbrace{\sum_{y_l \in \mathcal{Y}_l} \exp(-E_C(y_k, y_l))}_{y_l \in \mathcal{Y}_l}$$

$$= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) \sum_{y_k \in \mathcal{Y}_k} \exp(-E_B(y_j, y_k)) r_{C \to Y_k}(y_k) \underbrace{r_{B \to Y_j}(y_j)}$$

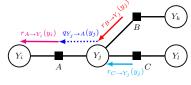
$$r_{B \to Y_j}(y_j)$$

$$= \sum_{y_i \in \mathcal{Y}_i} \underbrace{\sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) r_{B \to Y_j}(y_j)}_{r_{A \to Y_i}(y_i)} = \underbrace{\sum_{y_i \in \mathcal{Y}_i} r_{A \to Y_i}(y_i)}_{r_{A \to Y_i}(y_i)}.$$

Ulin.

Inference on trees (cont.)

Now we are assuming a tree-structured factor graph and applying the same elimination procedure as before.



$$Z = \sum_{y_i \in \mathcal{Y}_i} \underbrace{\sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) q_{Y_j \to A}(y_j)}_{r_{A \to Y_i}(y_i)}$$
$$= \sum_{y_i \in \mathcal{Y}_i} r_{A \to Y_i}(y_i) .$$

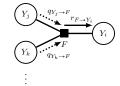
Ville.

Factor-to-variable message

2. Factor-to-variable message $r_{F \to Y_i} \in \mathbb{R}^{\mathcal{Y}_i}$ is given by

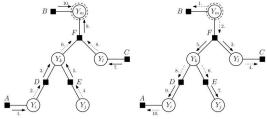
$$r_{F \to Y_i}(y_i) = \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i = y_i}} \left(\exp(-E_F(\mathbf{y}_F')) \prod_{l \in N(F) \setminus \{i\}} q_{Y_l \to F}(y_l') \right),$$

where $N(F) = \{i \in V : (i, F) \in \mathcal{E}'\}$ denotes the set of variables adjacent to F.



Message scheduling on trees

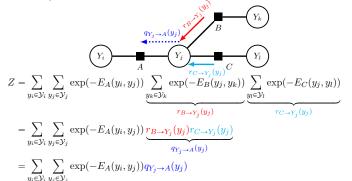
For tree-structured factor graphs there always exist at least one such message that can be computed initially, hence all the dependencies can be resolved.



- Select one variable node as root of the tree (e.g., Y_m) Compute leaf-to-root messages (e.g., by applying depth-first-search)
- Compute root-to-leaf messages (reverse order as before)

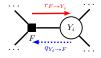
Inference on trees

Now we are assuming a tree-structured factor graph and are applying the same elimination procedure as before.



Thir. Messages

Message: pair of vectors at each factor graph edge $(i, F) \in \mathcal{E}'$.

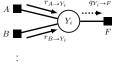


1. Variable-to-factor message $q_{Y_i \to F} \in \mathbb{R}^{\mathcal{Y}_i}$ is

$$q_{Y_i \to F}(y_i) = \prod_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i) ,$$

where $M(i) = \{ F \in \mathcal{F} : (i, F) \in \mathcal{E}' \}$ denotes the set of factors adjacent to Y_i .

Factor-to-variable message: $r_{F \to Y_i} \in \mathbb{R}^{\mathcal{Y}_i}$



Message scheduling *

Tible.

One can note that the message updates depend on each other.

$$r_{F \to Y_i}(y_i) = \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\exp(-E_F(\mathbf{y}_F')) \prod_{l \in N(F) \setminus \{i\}} q_{Y_l \to F}(y_l') \right) \tag{1}$$

$$q_{Y_i \to F}(y_i) = \prod_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i) \tag{2}$$

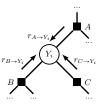
The messages that do not depend on previous computation are the following.

- The factor-to-variable messages in which no other variable is adjacent to the factor, that is the product in (1) will be empty.
- The variable-to-factor messages in which no other factor is adjacent to the variable, that is the product in (2) is empty and the message will be one.

Inference result: partition function Z

Partition function is evaluated at the (root) node i

$$Z = \sum_{y_i \in \mathcal{Y}_i} \prod_{F \in M(i)} r_{F \to Y_i}(y_i) .$$



Inference result: the marginals $\mu_F(\mathbf{y}_F)$

The marginal distribution for each factor can be computed as

$$\mu_{F}(\mathbf{y}_{F}) \stackrel{\Delta}{=} \sum_{\substack{\mathbf{y}' \in \mathcal{Y}, \\ \mathbf{y}_{F} = \mathbf{y}_{F}}} p(\mathbf{y}) = \sum_{\substack{\mathbf{y}' \in \mathcal{Y}, \\ \mathbf{y}_{F} = \mathbf{y}_{F}}} \frac{1}{Z} \exp(-\sum_{H \in \mathcal{F}} E_{H}(\mathbf{y}'_{H}))$$

$$= \frac{1}{Z} \exp(-E_{F}(\mathbf{y}_{F})) \sum_{\substack{\mathbf{y}' \in \times \\ H \in \mathcal{F} \setminus \{F\}}} \exp(\sum_{H \in \mathcal{F} \setminus \{F\}} -E_{H}(\mathbf{y}'_{H}))$$

$$= \frac{1}{Z} \exp(-E_{F}(\mathbf{y}_{F})) \prod_{i \in N(F)} q_{Y_{i} \to F}(y_{i}) .$$

$$q_{Y_{i} \to F} \stackrel{\mathbf{y}_{F}}{\longrightarrow} q_{Y_{i} \to F} \stackrel{\mathbf{y}_{F}$$

Optimality and complexity *

Assume a tree-structured factor graph. If the messages are computed based on depth-first search order for the sum-product algorithm, then it converges after $2|\mathcal{V}|$ iterations and provides the exact marginals.

If $|\mathcal{Y}_i| \leq K$ for all $i \in \mathcal{V}$, then the complexity of the algorithm $\mathcal{O}(|\mathcal{V}| \cdot K^L)$, where $L = \max_{F \in F} |N(F)|$.

$$r_{F \to Y_i}(y_i) = \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\exp(-E_F(\mathbf{y}_F')) \prod_{j \in N(F) \setminus \{i\}} q_{Y_j \to F}(y_j') \right).$$

Note that the complexity of the naïve way is $\mathcal{O}(K^{|\mathcal{V}|})$.

Reminder. Assuming $f, g : \mathbb{R} \to \mathbb{R}$, the notation $f(x) = \mathcal{O}(g(x))$ means that there exists C>0 and $x_0\in\mathbb{R}$ such that $|f(x)|\leqslant C|g(x)|$ for all $x>x_0$.

Max-sum algorithm

THE P

MAP inference

$$\mathbf{y}^* \in \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}} p(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}} \frac{1}{Z} \tilde{p}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}} \tilde{p}(\mathbf{y}) \; .$$

Similar to the sum-product algorithm one can obtain the so-called max-sum algorithm to solve the above maximization.

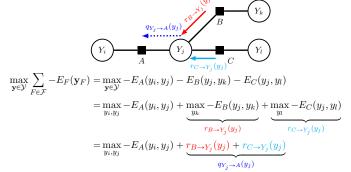
By applying the \ln function, we have

$$\begin{split} \ln \max_{\mathbf{y} \in \mathcal{Y}} \tilde{p}(\mathbf{y}) &= \max_{\mathbf{y} \in \mathcal{Y}} \ln \tilde{p}(\mathbf{y}) \\ &= \max_{\mathbf{y} \in \mathcal{Y}} \ln \prod_{F \in \mathcal{F}} \exp(-E_F(\mathbf{y}_F)) \\ &= \max_{\mathbf{y} \in \mathcal{Y}} \sum_{F \in \mathcal{F}} -E_F(\mathbf{y}_F) \; . \end{split}$$

White.

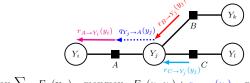
MAP inference on trees

Now we are assuming a tree-structured factor graph and applying an elimination procedure as before.



MAP inference on trees (cont.)

Now we are assuming a tree-structured factor graph and applying an elimination procedure as before.



$$\max_{\mathbf{y} \in \mathcal{Y}} \sum_{F \in \mathcal{F}} -E_F(\mathbf{y}_F) = \max_{y_i} \underbrace{\max_{y_j} -E_A(y_i, y_j) + q_{Y_j \to A}(y_j)}_{r_{A \to Y_i}(y_i)} = \max_{y_i} r_{A \to Y_i}(y_i)$$

The solution is then obtained as: $y_i^* \in \operatorname{argmax} r_{A \to Y_i}(y_i),$

$$y_i^r \in \operatorname{argmax} r_{A \to Y_i}(y_i),$$

$$y_j^* \in \underset{y_j}{\operatorname{argmax}} -E_A(y_i^*, y_j) + q_{Y_j \to A}(y_j),$$

$$y_k^* \in \operatorname{argmax} -E_B(y_j^*, y_k),$$

$$y_l^* \in \operatorname{argmax} -E_C(y_j^*, y_l)$$
.

Messages

Max-sum algorithm

The messages become as follows

$$\begin{split} q_{Y_i \to F}(y_i) &= \sum_{F' \in M(i) \backslash \{F\}} r_{F' \to Y_i}(y_i) \\ r_{F \to Y_i}(y_i) &= \max_{y_F' \in \mathcal{Y}_F,} \left(-E_F(y_F') + \sum_{l \in N(F) \backslash \{i\}} q_{Y_l \to F}(y_l') \right). \end{split}$$

The max-sum algorithm provides exact MAP inference for tree-structured factor graphs.

Choosing an optimal state

Sum-product algorithm Max-sum algorithm

After calculating the messages, the following back-tracking algorithm is applied for choosing an optimal y^*

1. Initialize the procedure at the root node (Y_i) by choosing any

$$y_i^* \in \underset{y_i \in \mathcal{Y}_i}{\operatorname{argmax}} \underset{\mathbf{y}' \in \mathcal{Y}, y_i' = y_i}{\operatorname{max}} \tilde{p}(\mathbf{y}') ,$$

and set $\mathcal{I} = \{i\}$.

- Based on (reverse) depth-first search order, for each $j \in V \setminus \mathcal{I}$
 - (a) choose a configuration y_i^* at the node Y_j such that

$$y_j^* \in \underset{y_j \in \mathcal{Y}_j}{\operatorname{argmax}} \max_{\substack{\mathbf{y}' \in \mathcal{Y}, \\ y_j' = y_j, \\ y' = y^* \ \forall i \in \mathcal{T}}} \tilde{p}(\mathbf{y}') ,$$

(b) update $\mathcal{I} = \mathcal{I} \cup \{j\}$.

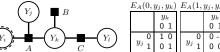
Sum-product algorithm

$$\begin{split} q_{Y_i \to F}(y_i) &= \prod_{F' \in M(i) \backslash \{F\}} r_{F' \to Y_i}(y_i) \\ r_{F \to Y_i}(y_i) &= \sum_{\substack{y_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\exp(-E_F(y_F')) \prod_{l \in N(F) \backslash \{i\}} q_{Y_l \to F}(y_l') \right) \end{split}$$

Max-sum algorithm

$$\begin{split} q_{Y_i \to F}(y_i) &= \sum_{F' \in M(i) \backslash \{F\}} r_{F' \to Y_i}(y_i) \\ r_{F \to Y_i}(y_i) &= \max_{\substack{y_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(-E_F(y_F') + \sum_{l \in N(F) \backslash \{i\}} q_{Y_l \to F}(y_l') \right) \end{split}$$

Let us consider the following factor graph with binary variables:



$y_j, y_k)$	$E_B(y_k)$				
y_k			y_k		
0 1		0	1		
0 -1		1	0.5		
0 0					

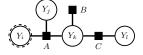
0 0 5

Let us chose the node Y_i as root. We calculate the messages for the $\emph{max-sum}$ algorithm from leaf-to-root direction in a depth-first search order as follows.

Example

- $q_{Y_l\to C}(0)=q_{Y_l\to C}(1)=0$
- $r_{C \to Y_k}(0) = \max_{y_l \in \{0,1\}} \{-E_C(0,y_l) + q_{Y_l \to C}(0)\} = \max_{y_l \in \{0,1\}} -E_C(0,y_l) = 0$ $r_{C \to Y_k}(1) = \max_{y_l \in \{0,1\}} \{-E_C(1, y_l) + q_{Y_l \to C}(1)\} = \max_{y_l \in \{0,1\}} -E_C(1, y_l) = 0$
- $r_{B \to Y_k}(0) = -1$ $r_{B \to Y_k}(1) = -0.5$
- $q_{Y_k \to A}(0) = r_{B \to Y_k}(0) + r_{C \to Y_k}(0) = -1 + 0 = -1$ $q_{Y_k \to A}(1) = r_{B \to Y_k}(1) + r_{C \to Y_k}(1) = -0.5 + 0 = -0.5$

Example (cont.) *



- 5. $q_{Y_j \to A}(0) = q_{Y_j \to A}(1) = 0$
- $r_{A \to Y_i}(0) = \max_{y_j, y_k \in \{0,1\}} \left\{ -E_A(0, y_j, y_k) + q_{Y_j \to A}(y_j) + q_{Y_k \to A}(y_k) \right\} = -0.5$ $r_{A \to Y_i}(1) = \max_{y_i, y_k \in \{0, 1\}} \{ -E_A(1, y_i, y_k) + q_{Y_j \to A}(y_j) + q_{Y_k \to A}(y_k) \} = 0.5$

In order to calculate the maximal state y^* we apply back-tracking

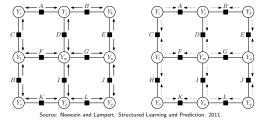
- $y_i^* \in \operatorname{argmax}_{y_i \in \{0,1\}} r_{A \to Y_i}(y_i) = \{1\}$
- 2. $y_i^* \in \operatorname{argmax}_{y_i} \max_{y_i, y_k \in \{0,1\}} \{-E_A(1, y_j, y_k) + q_{Y_k \to A}(y_k)\} = \{0\}$
- 3. $y_k^* \in \operatorname{argmax}_{y_k \in \{0,1\}} \{ -E_A(1,0,y_k) + r_{B \to Y_k}(y_k) + r_{C \to Y_k}(y_k) \} = \{1\}$
- 4. $y_l^* \in \operatorname{argmax}_{y_l \in \{0,1\}} \{-E_C(1, y_l) + r_{C \to Y_k}(1)\} = \{1\}$

Therefore, the optimal state $y^*=(y_i^*,y_i^*,y_k^*,y_l^*)=(1,0,1,1)$

Vite.

Message passing in cyclic graphs

When the graph has cycles, then there is no well-defined leaf-to-root order. However, one can apply message passing on cyclic graphs, which results in loopy belief propagation.



- Initialize all messages as constant 1
- Pass factor-to-variables and variables-to-factor messages alternately until
- Upon convergence, treat beliefs μ_F as approximate marginals

The approximate marginals, i.e.beliefs, are computed as before, but now a factor-specific normalization constant z_F is also used.

The factor marginals are given by

$$\mu_F(y_F) = \frac{1}{z_F} \exp(-E_F(y_F)) \prod_{i \in N(F)} q_{Y_i \to F}(y_i) ,$$

where the factor specific normalization constant is given by

$$z_F = \sum_{y_F \in \mathcal{Y}_F} \exp(-E_F(y_F)) \prod_{i \in N(F)} q_{Y_i \to F}(y_i) \;.$$

Loopy belief propagation

White.

Messages

The factor-to-variable messages $r_{F \rightarrow Y_i}$ remain well-defined and are computed

$$r_{F \to Y_i}(y_i) = \sum_{\mathbf{y}_F' \in \mathcal{Y}_F,} \left(\exp(-E_F(\mathbf{y}_F')) \prod_{j \in N(F) \setminus \{i\}} q_{Y_j \to F}(y_j') \right).$$

The variable-to-factor messages are simply normalized at every iteration as follows:

$$q_{Y_i \to F}(y_i) = \frac{\prod_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i)}{\sum_{y_i' \in \mathcal{Y}_i} \prod_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i')}$$

Beliefs (cont.) *

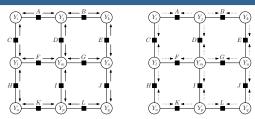
In addition to the factor marginals the algorithm also computes the variable marginals in a similar fashion

$$\mu_i(y_i) = \frac{1}{z_i} \prod_{F' \in M(i)} r_{F' \to Y_i}(y_i) ,$$

where the normalizing constant is given by

$$z_i = \sum_{y_i \in \mathcal{Y}_i} \prod_{F' \in M(i)} r_{F' \to Y_i}(y_i) .$$

Since the local normalization constant z_F differs at each factor for loopy belief propagation, the exact value of the normalizing constant Z cannot be directly calculated. Instead, an approximation to the partition function can be computed.



Loopy belief propagation is very popular, but has some problems:

- It might not converge (e.g., it can oscillate).
- Even if it does, the computed probabilities are only approximate.
- If there is a single cycle only in the graph, then it converges.

- computer vision. Foundations and Trends in Computer Graphics and Vision, 6(3-4),
- Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009
- Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference. Morgan Kaufmann, 1988

Summary

We have discussed exact inference methods on tree-structured graphical models

Probabilistic inference: Sum-product algorithm MAP inference: Max-sum algorithm

For general factor graphs: Loopy belief propagation

In the next lecture we will learn about

Human-pose estimation

Mean-field approximation: probabilistic inference via optimization (a.k.a. variational inference)