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Agenda for today’s lecture *

Human pose estimation Mean field approximation

In the last lecture we learnt about exact inference methods on graphical models
having tree structure.

Today we are going to learn about

B Human-pose estimation

Source: Nowozin and Lampert. Structured Learning and Prediction. 2011.
B Mean-field approximation: probabilistic inference via optimization (a.k.a.
variational inference)
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__The.model

Human pose estimation Mean field approximation

The goal is to recognize an articulated object with joints
connecting different parts, here it is a human body.

An object is composed of a number of rigid parts. Each
part is modeled as a rectangle parameterized by
(2,9y,s,0), where

B (z,y) means the center of the rectangle,
B se[0,1] is a scaling factor, and
B the orientation is given by 6.

In overall, we have a four-dimensional pose space.

We denote the locations of two (connected) parts by
li = (24,9, 54,0;) and I = (z;,y;j, 55, 05), respectively.
Source: Nowozin and Lampert. Structured

Learning and Prediction. 2011.
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Graphical representation
Human pose estimation Mean field approximation

The structure is encoded by a graph G = (V, &), where V = {v1,..
corresponds to 7 parts, and there is an edge (v;,v;) € £ for each pair of connected
parts v; and v;.

We want to minimize the following energy function:

l*earg{uin [Z: ni(li) + 2 dij(li, 1) ]

(viyv;)e€

where m;(l;) measures the degree of mismatch when
the part v; is placed at location I; and d;;(l;,1;)
measures the degree of deformation of the model
when part v; is placed at location /; and part v; is
placed at |0catIOn l] Learning and Prediction. 2011

Source: Nowozin and Lampert. Structured

Note that MAP inference can be efficiently done by making use of Max-sum
algorithm.
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Human pose estimation Mean field approximation

9. Human pose estimation & Mean
field approximation

Human pose estimation Mean field approximation

Human pose estimation

The model (cont.)
Human pose estimation Mean field approximation

An object (e.g., human body) is given by a configuration 1 = (I1,...,1,), where [;
specifies the location of part v;. The connections encode generic relationships such
as “close to”, “to the left of”, or more precise geometrical constraints such as ideal
joint angles.

m  The location of a joint between v; and v; is specified by two points (4
and (

13-
The relative orientation is given by 6;;, which is the difference between the
orientation of the two parts.

el ﬁ
Source: Felzenszwalb and Huttenlocher. Pictorial Structures for Object Recognition. 1JCV, 2005.

In principle, all parts depend on each other, however, tree structured model can be
considered for an articulated pose.
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Image filters *
Human pose estimation Mean field approximation

The image filtering is a technique for modifying or enhancing an image (e.g.,
smoothing, edge detection, sharpening). For example, the smoothing of an input
signal means of removing (or filtering out) high-frequency components.

Here we consider linear filtering in which the value of an output pixel is a linear
combination of the values of the pixels in the input pixel’s neighborhood. In a
spatially discrete setting, a linear filter is a weighted sum:

g(zo,y0) = [f * w](xo0,y0) = Z w(m,n) - f(xg —m,yo —n)
m,n
which is also called discrete convolution of f and w. In practice this summation
extends over a certain neighborhood. The matrix of weights w(m,n) is called a
mask.
(For more details please refer to the course of Computer Vision I: Variational Methods.)
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Derivatives of a Gaussian *

Human pose estimation Mean field approximation

Unary: energies *

Human pose estimation Mean field approximation

Let us consider the (one-dimensional) Gaussian density function:

N2
exp(— A0

Ix(zp,0)= m}%

Assume that u = 0 and let us calculate the derivatives of fx(z;0, ) of different

orders

Ofx(x;0,0) —x —z?
- = exp | =—
ox o321 202

Ofx(x;0,0) 22 — o2 —a?
0%z N P 202

0fx(x;0,0) x(3027x2)e ;xz
B3x N o’/ 27 *p 202
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Pairwise.energies *

Human pose estimation Mean field approximation

An image patch centered at some position is represented by a vector that collects
all the responses of a set of Gaussian derivative filters of different orders,
orientations and scales at that point. This vector is normalized and called the
iconic index at that position.

AETESNESN

The unary energies are defined as

m;(li) = =N (a(l), i, i)

where a(l;) is the iconic index at location [; in the image.

The parameters for each part (i.e. the mean vector p; and the covariance matrix
3, for all i = 1,...,n) can be obtained by maximum likelihood estimation for a
given set of training samples.
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Pairwise energies (cont.) *

Human pose estimation Mean field approximation

The pairwise energies have a special form as follows.
dij(Li, ;) = —=In N (Ti(ly) — T3 (1), 0, D)
where T;, Tj; and D;; are connection parameters
T, (L) =(2}, yl, si,co8(0; + 0;5),sin(6; + 6;5)),
Tji(lj) =(&f, yj, 55, cos(6;), sin(65)),
Dj; =diag(c2, 05,07, 1/k, 1/k) .

Ti;(1;) and Tj;(1;) are one-to-one mappings encoding the set of possible
transformed locations. 6;; stands for the ideal relative angle between the ith and
jth parts.
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Inference

Human pose estimation Mean field approximation

Let Ry be the matrix that performs a rotation of ¢ radians about the origin. Then,

/ ) . ) )
) =Ll womaia] e 1 2 eoma ]
Y; Yi Yi y j T Y
where (zi,y:), (x;,y;) and (245, yi;), (ji,y;:) are the positions of the joints in

image and local coordinates, respectively.
We assume the following joint distributions:

B N(z; —2;,0,02) and N(y; — y;,0,02) which measures the horizontal and
vertical distances, respectively, between the observed joint positions.

B N(s; —s7,0,02) measures the difference in foreshortening between the two
parts.

B M(8; —0;,0;5,k)ocexp(k cos(h; — 6; — 6;5)) measures the difference between
the relative angle of the two parts and the ideal relative angle.

SN

These parameters can be also obtained by maximum likelihood estimation.
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Efficient inference via min convolution

Human pose estimation Mean field approximation

MAP inference provides a single (best) prediction of the overall pose. The
factor—to—varaible messages can be written as

(expl-mit) = dy@ ) + Y, qu-or(h)

keN (F)\{i}

TPy (li) =  max
(13:1)eVr,

U=l;
— max ((exp(—mi(1)) exp(~dij(Lis ;) + @u,~r () )

eV \ e —— —_—

const. h(l]>

Y could be quite large (~ 1.5M possible states), hence }; x Yj is too big.
However a special form of pairwise energies is used, so that a message can be
calculated in O(]Y;|) time.
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Calculating the lower envelope

Human pose estimation Mean field approximation

Note that any two parabolas defining the lower envelope intersect at exactly one
point. The z-coordinate of the intersection of the parabolas rooted at (p, h(p))
and (g, h(q)) can be calculated as

h(p) — h(q) + cp? — cq?

T 2e(p— q)

Note that when ¢ < p then the parabola coming from ¢ is below the one coming
from p to the left of the intersection point s, and above it to the right of s.

The algorithm manages two arrays:

B The horizontal grid location of the ith parabola in the lower envelope is stored
in v[]

B The range in which the ith parabola of the lower envelope is below the others
is given by z[i] and z[i + 1]

Assume that we have to compute a message for (i, j) € &, that is for a given c e R

r(l) = H;jn(c “dij(li, 1) + h(l5)) = Hll]in(c (L= 15)? + h(ly) -

Here we only discuss the one-dimensional case, however, the extension for the
multi-dimensional case is straightforward.

The basic idea is to
calculate the lower
envelope, which
can be done in linear

. h(R’
time w.r.t. the
possible values of naet v
li € V. 1(0))
o R )

Source: Felzenszwalb and Huttenlocher. Pictorial Structures for Object Recognition. 1JCV, 2005.
We consider parabolas rooted at (I;,h(l;)) (i.e. y = ¢ (x — 1;)%> + h(L;)).
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Updating the lower envelope

Human pose estimation Mean field approximation

There are two possible cases when adding a parabola from g to the lower envelope
constructed so far:

vi41  vol e s a vid1 ol s =] a

s> z[j] s < z[j]

Source: Felzenszwalb and Huttenlocher. Pictorial Structures for Object Recognition. 1JCV, 2005.
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Pseudo-code of:the min convolution *

Human pose estimation Mean field approximation

> Index of rightmost parabola in lower envelope
= Locations of parabolas in lower envelope
= Locations of boundaries between parabolas

j<0
v[0] <0
z[0] « —o0
z[1] « w0
forg=1—>n—1do
s < (h(q) — h(vlj]) + cq® = cvli1?)/(2e(q
if s < z[j] then
j < j—1and goto 6
else
Je—j+1
v[j] < g
end if
: end for
1 j<0
: forg=0—->n—1do
while z[j + 1] < ¢ do
je—Jj+1
end while
(q) < c(g —v[j])* +
: end for

= Compute lower envelope

—o[j]))

2[jl s zlj+ 1] <0

= Fill in values of min convolution

(vl5])

KL divergence

Human pose estimation Mean field approximation

Assume two discrete probability distributions p and g. One way to measure the
difference between p and ¢ is to calculate the Kullback—Leibler (KL) divergence
(a.k.a. relative entropy) defined as

Dxu(pla) = D, p(i)log Ef Zp )log p(i) Zp(z)logq

=1Ep[logp(1)] - Ep[log q(i)] .

It is defined iff for all 4, ¢(i) = 0 implies p(¢) = 0. If p(i) = 0, then the ith term is
interpreted as 0. The KL divergence is always non-negative, moreover

Dx1,(pllg) = 0 iff p = q almost everywhere. Nevertheless, it is neither symmetric
nor does it satisfy the triangle inequality.

Interpretation (Information Theory): it is the amount of information lost when ¢ is
used to approximate p. It measures the expected number of extra bits required to

code samples from p using a code optimized for ¢ rather than the code optimized

for p.
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Human pose estimation Mean field approximation

Mean field approximation

_Motivation

Human pose estimation Mean field approximation

For general (discrete) factor graph models, performing probabilistic inference is
hard. Assume we are given an intractable distribution p(y | x). We consider an
approximate distribution ¢(y), which is tractable, for p(y | x).

One way of finding the best approximating distribution is to pose it as an
optimization problem over probability distributions: given a distribution p(y | x)
and a family @ of tractable distributions q € () on ), we want to solve

I} mln X = ar, mln (7)
¢* argmin Dt (a(y)Ip(y | x) = argm y; a(y)log T
:argmin{ D ay)loga(y) — Y a(y) logp(y | X)} :
€ yey yey
—_—

—H(q)

The term _Zye)} q(y)logq(y) 2 H(q) is called the entropy of the distribution g.
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Mean field methods

Mean field approximation

Human pose estimation

> aly)logp(y | x)

Dxw(q(y)lp(y | %)) = - H(q) —

yey
1
=—H(q) - y%}q(y) log 75 gexp(—Ep(yF; xr))
= —H(q)+ >, a(y) Y, Er(yrixr) + log Z(x)
yey FeF
=—H(@+ Y. > > q)Er(yrixr)+log Z(x)

FeFyreYr y'ey,

Ye=yr
KPRy ()
=—H(q) + Z Z wryp (@) Er(yrixF) +log Z(x) ,
FeF yreYr

where pry,.(q) = Zy,gy’y/F:yF q(y’) are the marginals of q.
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Naive mean field *

Human pose estimation Mean field approximation

Naive:mean field

Mean field approximation

Human pose estimation

Take a set g as the set of all distributions in the form:

a(y) = [ [ai(w)

i€V

For example, in case of the following factor graph:

211
2.7
f

Original factor graph Mean field approximation
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Naive: mean field

Human pose estimation

Mean field approximation

Set ¢ consists of all distributions in the form:

a(y) = [ [a:(w)

i€V
Marginals pipy,. take the form
prye(@) = Y ) =avmyr) = [] @)
y'ey, iEN(F)
Yp=yr

Entropy H(q) decomposes as

H(q) = Y Hi(g) ==Y, >, ai(vi)logai(i) -

i€V €V yi€Ys

Proof. Exercise.

Putting all together,

¢* € argmin Dk (q(y)[p(y | x))
qeQ

_argrgm{— @+ Y, D) wrye(@Er(yrxr) +log Z(x)

FeF ypeYr
=argmax < H(q) —
9eQ

=argmax{— > Y ai(yi)logaiy:) = D, ( [1 @) )EF(yF,XF)

=Q i€V g€ FeF yreYr ieN(F)

!

D0 D brye(Q)Er(yrixr)

FeF ypeYr

Optimizing over () means to optimize over all g; such that ¢;(y;) > 0 and

Dyiey; Gi(yi) = Lforallie V.
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Optimization

Human pose estimation Mean field approximation

Lagrange multipliers *

Human pose estimation Mean field approximation

Z Z ( H qi(yi)>EF(YF;XF)}.

FeF yrpeYr ieN(F)

D ai(wi) log ai(yi) —

argmax {7
€Q i€V yi€Yi

entropy

The entropy term is concave and the second term is non-concave due to products
of variables occurring in the expression. Therefore solving this non-concave
maximization problem globally is hard in general.

Remedy: block coordinate ascent

We hold all variables fixed except for a single
block ¢, then we obtain a tractable concave
maximization problem

— closed-form update for each ¢,,.

ical Models in Computer

Human pose estimation Mean field approximation

A can be calculated as follows.

D alw) = D) exp(—l— > o211 qj(y}))EF(y%;XF)JrA)

yi€Yi yi€Yi FeM(i) ypeyr, jeN(F)\{i}
Yi=vi
exp(l—A) = D) exp (— > 11 q]'(y;))EF(Y%;XF)>
yi€Yi FeM(i) yneVr, jeN(F)\{i}
Yi=yi
Zi(xF)
A—1=—log Zi(xF),

where Z;(xp) is a normalizing constant for g;.
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Semantic segmentation

Human pose estimation Mean field approximation

To obtain closed form solution, we define the Lagrangian function:

L(gi, A) = { =20 D% ailyi) logai(w)

€V yi€Ys
- ( 11 Qi(yi))EF(}’F;XF)+/\( » qz'(yi)*l)}-
FeFypeYr ieN(F) Yi€Vi
Setting the derivatives of L w.r.t. ¢; to 0, we obtain
oL
Zatyy ~ 0=~ losailu) +1) - oo ( T 4 )EF(yF,XF) +A
2i\Yi FEM(l)yFE)}p, JEN(F)\(i)
=yi

q; (yi) =exp ( -1- ) 11 qj(y}))EF(Y’F;XF) + >\> .
FeM(i) ypedr, jEN(P\{i)
Yi=yi
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Update equation

Human pose estimation Mean field approximation

By substituting, we obtain the obtain the update equation for the Naive mean field
method

qf(yi):eXp<— >0 ( I q]'(y§~))EF(y%;XF)—10gZi(XF))
FeM(i) y/p;eva JEN(F)\{i}
Y;=Yi

-y (O TI q](y])Ep(yF,xF))
FeM(i )yFEyp, JEN(F)\{i}
=Yi

S ! ex
B Zi (X b
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Energy functions

Mean field approximation

Human pose estimation

Krahenbiihl and Koltun proposed an efficient approximate inference in fully
connected CRF model by applying Naive mean field approach.

Semantic segmentation: assign a label
from the set of labels £ = {l1,12,..., 1k}
for each pixel on the image regarding
their semantic meaning.

For each pixel on the image a random variable is assigned
taking a value from £. A fully connected pairwise CRF
model G = (V, ) is considered, where the corresponding
energy function is given by

=2 Bilw) + Y Eijlyiy)

Ia% (i,5)e€

where £ = {(i,j) eV x V| i < j}.
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Inference

Human pose estimation Mean field approximation

B Unary energies E;(y;) are computed independently for each pixel as
E;i(y;) = —log P;(y;) measures the degree of disagreement between labelling
y; and the image at pixel i.

B Pairwise energies (contrast—sensitive Potts—model), measuring the extent
to which the labelling y is not piecewise smooth, have the form (p; and I;
denote the pixel coordinates and intensity, respectively).

By ) =lvi # 951>, w ™k (£, 8)
m

1
=i # yi] ) 0™ exp <—§(fi — )"0, - f]’))
m

lfrfj|2)

lpi — psI?
=[yi # yj]]{w‘” exp ( -l 20

202
ol

The parameters 6,63 and 6., are estimated on a set of training images.
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DeepLab: CRFias post-processing

Human pose estimation Mean field approximation

The inference is based on Naive mean field approximation, where the update
equation is given by

K
gily) = Ziiexp {—Ei(y» Ayl ) w™ Zk(m>(fi,f,->qj(z')} ‘

rel m=1 i)

The inference is performed in average 0.2 seconds for 500.000 variables (in
contrast to 36 hours).

The main idea: the message passing step can be expressed as a convolution with a
Gaussian kernel G's,im) in feature space:

DR (EL £5)g; (1) — () =

JEV

[Gsom * aD](E) — a: ()

Note that the convolution sums over all variables, while message passing does not
sum over g;. This convolution can be efficiently calculated in O(|V]) time (instead
of O(|V|%)).
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Input
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DCNN
Atrous Convolution

R

Fully Connected CRF

5
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Image/G.T. DCNN output CRF Iteration 1 CRE Iteration 2 CRF Iteration 10

Source: Chen et al.. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. ICLR, 2015
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_Summary *

Human pose estimation Mean field approximation

Next lecture *

Human pose estimation Mean field approximation

Mean field approximation: instead of an intractable distribution p(y | x), we
consider an approximate distribution ¢(y), which minimizes the KL divergence.

In case of naive mean field approximation ¢(y) is defined as
aly) = [ Jai(w) ,
eV
which is tractable.

A local optimal solution can be obtained by applying the update equation:

1
a; (yi) = mexp ( - Z H ‘Ij(yj))EF(YF;XF)> :
iEE FeM(i)yluedp, jeN(F)\(i}
Yi=yi
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Literature *

Human pose estimation Mean field approximation

In the next lecture we will learn about

m Sampling of a distribution (p(y | x)) via Gibbs sampling.
m Parameter learning
Consider an energy function for a parameter vector w = [w1,w2]":

E(y;x,w) = wlZ Ei(ys; x:) + w2ZEij(yiayj) .
iev (irg)e€

We aim to estimate optimal parameter vector w consisting of (positive)
weighting factors (like wq, w2 € R") for E(y;x, w).
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Human pose estimation
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