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Today we are going to learn about

■ Sampling
We wish to draw samples in general from a distribution. Moreover, we aim to
estimate expectations

ErfpZqs “
ÿ

z

fpzqpZpzq .

■ Parameter learning
Consider an energy function for a parameter vector w “ rw1, w2sT :

Epy;x,wq “ w1

ÿ

iPV
Eipyi;xiq ` w2

ÿ

pi,jqPE
Eijpyi, yj ;xi, xjq .

We aim to estimate optimal parameter vector w consisting of (positive)
weighting factors (like w1, w2 P R`) for Epy;x,wq.

Sampling

Sampling Parameter learning

Monte Carlo

Sampling Parameter learning
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We wish to evaluate the expectation

ErfpZqs “
ÿ

z

fpzqpZpzq .
p(z) f(z)

z

Source: C. Bishop. PRML, 2006.

Monte Carlo is the art of approximating an expectation by the sample mean of a
given function f . The general idea behind sampling is to obtain a set of i.i.d.
samples zpiq drawn from pZpzq.
We define the Monte Carlo estimator as

f̂ “ 1

n

nÿ

i“1

fpzpiqq .

The (weak) law of large numbers states that for any ǫ ą 0

lim
nÑ8P p|f̂ ´ Erf s| ě ǫq “ 0 .

Monte Carlo

Sampling Parameter learning
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Erf̂ s “ E

«
1

n

nÿ

i“1

fpzpiqq
ff

“ 1

n

nÿ

i“1

Erfpzpiqqs “ ErfpZqs .

Note that the accuracy of the estimator f̂ does not depend on the dimensionality
of z, but the number of samples n.

If we have a method to obtain samples typ1q, . . . ,ypnqu from the distribution
ppy | xq, then we can form an estimator, that is

Ey„ppy|xqrϕpx,yqs « 1

n

nÿ

i“1

ϕpx,ypiqq .

Basic sampling

Sampling Parameter learning
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Let hpyq be a continuous and strictly monotonic
cumulative distribution function (cdf.) and Z be a
uniformly distributed random variable on the interval
r0, 1s. Then

Y “ h´1pZq
is a random variable with cdf. hpyq, where h´1pyq is
the inverse of hpyq.

p(y)

h(y)

y0

1

Source: C. Bishop. PRML, 2006.

The cdf. of the uniformly distributed Z „ Up0, 1q is given by

FZpzq ∆“ P pY ă zq “

$
’&
’%

0, if z ď 0

z, if 0 ă z ď 1

1, if 1 ă z .

Therefore, the cdf. of Y is given by

FY pyq ∆“ P pY ă yq “ P ph´1pZq ă yq “ P pZ ă hpyqq “ FZphpyqq “ hpyq .

Rejection sampling

Sampling Parameter learning
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Suppose we wish to sample from a distribution ppzq that is a relatively complex
distribution, therefore sampling directly from ppzq is difficult.

Furthermore assume that we are able
to evaluate ppzq for any given value of
z, up to a normalizing constant Z.
That is

ppzq “ 1

Z
p̃pzq ,

where p̃pzq can readily be evaluated,
but Z is unknown.

z0 z

u0

kq(z0)
kq(z)

p̃(z)

Source: C. Bishop. PRML, 2006.

We need for a simpler distribution qpzq, called a proposal distribution, from
which we can readily draw samples. Moreover, let k be a constant such that

kqpzq ě p̃pzq for all values of z .



Rejection sampling

Sampling Parameter learning
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1. Generate a sample z0 from the
distribution qpzq.

2. Generate a sample
u0 „ Up0, kqpz0qq.

This pair of random samples has
uniform distribution under the graph of
the function kqpzq.

z0 z

u0

kq(z0)
kq(z)

p̃(z)

Source: C. Bishop. PRML, 2006.

If u0 ą p̃pz0q then the sample is rejected, otherwise u0 is retained. Note that the
remaining pairs follow uniform distribution under the curve of p̃pzq. Hence the
corresponding z values are distributed according to ppzq.
The values of z are generated from qpzq, and these samples are accepted with
probability p̃pzq{pkqpzqq, therefore

pp’z is accepted’q “
ż

p̃pzq
kqpzqqpzqdz “ 1

k

ż
p̃pzqdz “

ş
p̃pzqdzş
kqpzqdz “ Z

k
.

Adaptive rejection sampling ˚

Sampling Parameter learning
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In the case of log concave distributions, an envelope function can be constructed
using the tangent lines computed at a set of grid points.

A sample value is drawn from the envelope function considering as the scaled
proposal distribution kqpzq.

z1 z2 z3 z

ln p(z)

Source: C. Bishop. PRML, 2006.

If a sample point is rejected, it is added to the set of grid points and used to refine
the envelope distribution.

Markov chain ˚

Sampling Parameter learning
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Given a finite set Y and a matrix T P RYˆY , then a series of random variables
Y1, Y2, . . . taking values from Y is called a (homogeneous) Markov chain with
transition matrix T, if

P pYt`1 “ ypt`1q | Y1 “ yp1q, Y2 “ yp2q, . . . Yt “ yptqq
“ P pYt`1 “ ypt`1q | Yt “ yptqq
“ Typtq,ypt`1q .

Example: Let us consider a Markov chain with T P RYˆY , where Y “ tA,B,Cu.
T A B C

A 0.25 0.5 0.5
B 0.4 0.1 0.5
C 0 0.5 0.5

Invariant distribution ˚

Sampling Parameter learning
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Given the initial probabilities ppyp0qq, this determines the behavior of the chain at
all times. By making use of T one can find P pYt`1 “ ypt`1qq as follows:

ppypt`1qq “
ÿ

yptq
ppypt`1q, yptqq “

ÿ

yptq
ppypt`1q | yptqqppyptqq “

ÿ

yptq
Typtq,ypt`1qppyptqq .

The distribution p˚pyq is called invariant if

p˚pyq “
ÿ

y1
Ty1,yp

˚py1q .

The so-called detailed balance:

p˚pyqTy,y1 “ p˚py1qTy1,y ,

provides a sufficient condition for a distribution to be invariant, since

ÿ

y1
Ty1,yp

˚py1q “
ÿ

y1
p˚pyqTy,y1 “ p˚pyq

ÿ

y1
Ty,y1 “ p˚pyq

ÿ

y1
ppy1 | yq “ p˚pyq .

Ergodic Markov chain ˚

Sampling Parameter learning
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If ppyptqq converges to an invariant distribution as t Ñ 8, then the Markov chain is
called ergodic.

An ergodic Markov chain can have only one invariant distribution, which is referred
to as its equilibrium distribution.

The next theorem answers the question of when a Markov chain is ergodic.

Theorem 1. If a homogeneous Markov chain on a finite state space with
transition probabilities Ty,y1 has p˚ as an invariant distribution and

min
y

min
y1:p˚py1qą0

Ty,y1

p˚py1q ą 0 ,

then the Markov chain is ergodic, i.e., regardless the initial probabilities ppyp0qq
lim
tÑ8 ppyptqq “ p˚pyq .

Markov Chain Monte Carlo (MCMC)

Sampling Parameter learning
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Let us consider rejection sampling, where the proposal distribution qpy1 | yq is a
conditional distribution such that the next sample y1 depends only on the current
sample value y (i.e. it is a Markov chain).

The probability of the acceptance of a new sample, therefore, can be written as

ppy1 | yq “ qpy1 | yqApy1, yq .

If the candidate sample is accepted, then ypt`1q “ y1, otherwise the candidate
point y1 is discarded and ypt`1q is set to yptq and another candidate sample is
drawn from the distribution qpy | ypt`1qq.
Note that in rejection sampling, rejected samples are simply discarded.

Metropolis-Hastings algorithm ˚

Sampling Parameter learning
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Let us assume a proposal distribution q (that is not necessarily symmetric, i.e.
qpy1 | yq ‰ qpy | y1q) and let

Apy1, yq “ min

ˆ
1,

ppy1qqpy | y1q
ppyqqpy1 | yq

˙
.

The detailed balance is satisfied, since

ppyqTy,y1“ppyqqpy1 | yqApy1, yq “ ppyqqpy1 | yqmin

ˆ
1,

ppy1qqpy | y1q
ppyqqpy1 | yq

˙

“ppy1qqpy | y1qmin

ˆ
1,

ppyqqpy1 | yq
ppy1qqpy | y1q

˙
“ppy1qqpy | y1qApy, y1q“ppy1qTy1,y.

A sample y1 is accepted with probability

Apy1,ypt´1qq “ min

˜
1,

p̃py1 | xq qpypt´1q | y1q
p̃pypt´1q | xq qpy1 | ypt´1qq

¸
.

Metropolis-Hastings algorithm ˚

Sampling Parameter learning
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Input: p̃py | xq 9 ppy | xq, unnormalized target distribution; qpy | ypt´1qq,
proposal distribution; T , the number of generated samples

Output: typtquTt“1, sequence of samples with approximately yptq „ ppy | xq
1: yp0q Ð arbitrary in Y
2: for t “ 1, . . . , T do
3: y1 „ qpy | ypt´1qq Ź Generate a candidate

4: a Ð min
´
1, p̃py1|xq qpypt´1q|y1q

p̃pypt´1q|xq qpy1|ypt´1qq
¯

Ź Compute acceptance prob.

5: yptq Ð
#
y1 with probability a (accept)

ypt´1q otherwise (reject)
Ź Update

6: output yptq
7: end for



Gibbs sampling

Sampling Parameter learning
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Geman and Geman proposed a simple MCMC algorithm which can be seen as a
special case of Metropolis-Hasting algorithm.

As usual yi will denote the ith component of y. Moreover, we will use the notation
yzi for yVztiu, i.e. yi is omitted.

Each step of the Gibbs sampling procedure involves replacing the value of one of
the variables Yi by a value drawn from the distribution of that variable conditioned
on the values of the remaining variables, that is

y
pt`1q
i Ð y1

i „ ppyi | yptq
zi ,xq .

This requires only the unnormalized distribution p̃ and the normalization over a
single variable:

ppyi | yptq
zi ,xq “

ppyi,yptq
zi | xq

ppyptq
zi | xq

“
ppyi,yptq

zi | xq
ř

yiPYi
ppyi,yptq

zi | xq
“

p̃pyi,yptq
zi | xq

ř
yiPYi

p̃pyi,yptq
zi | xq

Gibbs sampling

Sampling Parameter learning
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ppyi | yptq
zi ,xq “

p̃pyi,yptq
zi | xq

ř
yiPYi

p̃pyi,yptq
zi | xq

“
ś

FPMpiq expp´EF pyi,yptq
NpF qztiu;xF qq

ř
yiPYi

ś
FPMpiq expp´EF pyi,yptq

NpF qztiu;xF qq
.

The basic idea is that while sampling from ppy | xq is hard, sampling from the
conditional distributions ppyi | yzi,xq can be performed efficiently.

Gibbs sampling as the special case of the
Metropolis-Hastings algorithm ˚

Sampling Parameter learning
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Consider a Metropolis-Hastings sampling step involving the variable yi in which the
remaining variables yzi remain fixed.

The transition probability from ypt´1q to y1 is given by

qipy1 | ypt´1qq “ ppy1
i | yzi,xq .

Note that y1
zi “ y

pt´1q
zi because these components are unchanged by the sampling

step.

One can see that each proposal is then always accepted, i.e.

Aipy1,ypt´1qq “ ppy1 | xq qipypt´1q | y1q
ppypt´1q | xq qipy1 | ypt´1qq

“
ppy1

i | y1
zi,xq ppy1

zi | xq ppypt´1q
i | y1

zi,xq
ppypt´1q

i | ypt´1q
zi ,xq ppypt´1q

zi | xq ppy1
i | ypt´1q

zi ,xq
“ 1 .

Gibbs sampler ˚

Sampling Parameter learning
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Input: p̃py | x,wq 9 ppy | x,wq, unnormalized target distribution; T , the number
of generated samples

Output: typtquTt“1, sequence of samples with approximately yptq „ ppy | x,wq
1: yp0q Ð arbitrary in Y
2: for t “ 1, . . . , T do
3: yptq Ð ypt´1q
4: for all i P V do

5: Sample y
ptq
i „ ppyi | yptq

zi ,xq “ p̃pyi,yptq
zi |xq

ř
yiPYi

p̃pyi,yptq
zi |xq Ź Sweep

6: end for
7: output yptq
8: end for

Summary

Sampling Parameter learning
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We wish to obtain samples typ1q, . . . ,ypnqu from the distribution ppy | xq, in order
to form an estimator

Ey„ppy|xqrϕpx,yqs « 1

n

nÿ

i“1

ϕpx,ypiqq .

MCMC is a method of rejection sampling, where the proposal distribution is
defined as a Markov chain.

Gibbs sampling is a special case of the Metropolis-Hastings algorithm
(i.e.MCMC), where each step involves replacing the value of one of the variables
by a value drawn from the distribution of that variable conditioned on the values of
the remaining variables via basic sampling.

Parameter learning

Sampling Parameter learning

Parameterization

Sampling Parameter learning
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Let us consider the following example for an energy function:

Epy;xq“
ÿ

iPV
Eipyi;xiq `

ÿ

pi,jqPE
Eijpyi, yjq .

Instead, one may want to apply weighting factors w1, w2 P R`:

Epy;x,wq“w1

ÿ

iPV
Eipyi;xiq ` w2

ÿ

pi,jqPE
Eijpyi, yjq“

B„
w1

w2


,

„ ř
iPV Eipyi;xiqqř

pi,jqPE Eijpyi, yjq
F

.

In a more general form, one can write the energy functions as a linear
combination for a parameter vector w P RD, D “ |F |:

Epy;x,wq “
C»

—–
w1
...

wD

fi
ffifl ,

»
—–

EF1pyF1 ;xF1qq
...

EFD
pyFD

;xFD
qq

fi
ffifl

looooooooooomooooooooooon
ϕpx,yq

G
“ xw, ϕpx,yqy .

Parameter learning

Sampling Parameter learning
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Learning graphical models (from training data) is a way to find among a large class
of possible models a single one that is best in some sense for the task at hand.

We assume a fixed underlying graphical model with parameterized conditional
probability distribution

ppy | x,wq “ 1

Zpx,wq expp´Epy;x,wqq “ 1

Zpx,wq expp´xw, ϕpx,yqyq ,

where Zpx,wq “ ř
yPY expp´xw, ϕpx,yqyq. The only unknown quantity is the

parameter vector w, on which the energy Epy;x,wq depends linearly.

In principle each part of a graphical model (i.e. random variables, factors and
parameters) can be learned. However we assume that the model structure and
parameterization are specified manually, and learning amounts to finding a vector
of real-valued parameters.



Probabilistic parameter learning

Sampling Parameter learning
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Let dpy | xq be the (unknown) conditional distribution of labels for a problem to
be solved. For a parameterized conditional distribution ppy | x,wq with parameters
w P RD, probabilistic parameter learning is the task of finding a point estimate
of the parameter w˚ that makes ppy | x,w˚q closest to dpy | xq.

Probabilistic parameter learning

Sampling Parameter learning
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We aim at identifying a weight vector w˚ that makes ppy | x,wq as close to the
true conditional label distribution dpy | xq as possible. The label distribution
itself is unknown to us, but we have an i.i.d. sample set D “ tpxn,ynqun“1,...,N

from dpx,yq that we can use for learning.

We now define what we mean by “closeness” between conditional distributions
ppy | x,wq and dpx,yq for any x P X . We measure the dissimilarity by making
use of Kullback-Leibler (KL) divergence:

KLpdpy | xq}ppy | xqq “
ÿ

yPY
dpy | xq log dpy | xq

ppy | x,wq .

From this we obtain a total measure of how much p differs from d by their
expected dissimilarity over all x P X :

KLtotpd}pq ∆“ ErKLpdpy | Xq}ppy | Xqqs “
ÿ

xPX
dpxq

ÿ

yPY
dpy | xq log dpy | xq

ppy | x,wq .

Probabilistic parameter learning

Sampling Parameter learning
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We choose the parameter w˚ that minimizes expected dissimilarity, i.e.

w˚ P argmin
wPRD

KLtotpd}pq “ argmin
wPRD

ÿ

xPX
dpxq

ÿ

yPY
dpy | xq log dpy | xq

ppy | x,wq
“ argmax

wPRD

ÿ

xPX

ÿ

yPY
dpy | xqdpxq log ppy | x,wq

“ argmax
wPRD

Epx,yq„dpx,yqrlog ppy | x,wqs .

Unfortunately, we cannot compute this expression directly, because dpx,yq is
unknown to us. However, we can approximate it using the sample set D.

« argmax
wPRD

ÿ

pxn,ynqPD
log ppyn | xn,wq “ argmax

wPRD

Nÿ

n“1

log
expp´xw, ϕpxn,ynqyq

Zpxn,wq

“ argmin
wPRD

Nÿ

n“1

xw, ϕpxn,ynqy `
Nÿ

n“1

logZpxn,wq .

Maximum conditional likelihood ˚

Sampling Parameter learning
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By making use of i.i.d. assumption of the sample set D, we can write that

argmax
wPRD

Epx,yq„dpx,yqrlog ppy | x,wqs

« argmax
wPRD

ÿ

pxn,ynqPD
log ppyn | xn,wq

“ argmax
wPRD

log
Nź

n“1

ppyn | xn,wq

“ argmax
wPRD

Nź

n“1

ppyn | xn,wq

“ argmax
wPRD

ppy1, . . . ,yN | x1, . . . ,xN ,wq ,

from which the name maximum conditional likelihood (MCL) stems.

Prior distribution on w

Sampling Parameter learning
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When the number of training instances is small compared to the number of
degrees of freedom (D) in w, then the approximation

argmax
wPRD

Epx,yq„dpx,yqrlog ppy | x,wqs « argmax
wPRD

ÿ

pxn,ynqPD
log ppyn | xn,wq

becomes unreliable, and w˚ will vary strongly with respect to the training set D,
which means MCL training is prone to overfitting.

To overcome this limitation, we treat w not as a deterministic parameter but as
yet another random variable. For any prior distribution ppwq over the space of
weight vectors, the posterior probability of w for given observations
D “ tpxn,ynqun“1,...,N is given by (see Exercise):

ppw | Dq “ ppwq
Nź

n“1

ppyn | xn,wq
ppyn | xnq .

Negative conditional log-likelihood ˚

Sampling Parameter learning
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Assume a prior distribution of ppwq, then we can get

w˚ P argmax
wPRD

ppw | Dq
“ argmin

wPRD

t´ log ppw | Dqu

“ argmin
wPRD

#
´ log

˜
ppwq

Nź

n“1

ppyn | xn,wq
ppyn | xnq

¸+

“ argmin
wPRD

#
´ log ppwq ´

Nÿ

n“1

log ppyn | xn,wq `
Nÿ

n“1

log ppyn | xnq
+

“ argmin
wPRD

#
´ log ppwq ´

Nÿ

n“1

log ppyn | xn,wq
+

.

Regularized conditional log-likelihood ˚

Sampling Parameter learning
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w˚ P argmin
wPRD

#
´ log ppwq ´

Nÿ

n“1

log ppyn | xn,wq
+

Assuming a zero-mean Gaussian prior ppwq 9 exp
´

´ }w}2
2σ2

¯
, then we get

w˚ P argmin
wPRD

#
}w}2
2σ2

´
Nÿ

n“1

log ppyn | xn,wq
+

“ argmin
wPRD

#
λ}w}2 `

Nÿ

n“1

xw, ϕpxn,ynqy `
Nÿ

n“1

logZpxn,wq
+

,

where λ “ 1
2σ2 .

The parameter λ is generally considered as a free hyper-parameter that determines
the regularization strength. Unregularized situation can be seen as the limit case
for λ Ñ 0.

Regularized maximum conditional likelihood
training

Sampling Parameter learning
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Let ppy | x,wq “ 1
Zpx,wq expp´xw, ϕpx,yqyq be a probability distribution

parameterized by w P RD, and let D “ tpxn,ynqun“1,...,N be a set of training
examples. For any λ ą 0, regularized maximum conditional likelihood
(RMCL) training chooses the parameter as

w P argmin
wPRD

λ}w}2 `
Nÿ

n“1

xw, ϕpxn,ynqy `
Nÿ

n“1

logZpxn,wq .

For λ “ 0 the simplified rule

w P argmin
wPRD

Nÿ

n“1

xw, ϕpxn,ynqy `
Nÿ

n“1

logZpxn,wq

results in maximum conditional likelihood (MCL) training.



Negative conditional log-likelihood:
Toy example ˚

Sampling Parameter learning

IN2329 - Probabilistic Graphical Models in Computer Vision 10. Sampling & Parameter learning – 33 / 39

Consider a simple CRF model with a single variable, where Y “ t´1,`1u. We
define the energy function as

Epx, y,wq “ w1ϕ1px, yq ` w2ϕ2px, yq .
Assuming a training set D “ tp´10,`1q, p´4,`1q, p6,´1q, p5,´1qu with

ϕ1px, yq “
#
0, if y “ ´1

x, if y “ `1
and ϕ2px, yq “

#
x, if y “ ´1

0, if y “ `1
.

Source: Nowozin and Lampert. Structured prediction and learning in computer vision, 2010.

Lpwq “ λ}w}2 ` řN
n“1xw, ϕpxn, ynqy ` řN

n“1 logZpxn,wq.

Steepest descent minimization ˚

Sampling Parameter learning
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Let us consider the negative conditional log-likelihood function

Lpwq “ λ}w}2 `
Nÿ

n“1

xw, ϕpxn,ynqy `
Nÿ

n“1

logZpxn,wq .

Obviously, L is C8-differentiable, i.e. smooth function, on all RD.

1: wcur Ð 0
2: repeat
3: d Ð ´∇wLpwcurq
4: η Ð argminηą0 Lpwcur ` ηdq
5: wcur Ð wcur ` ηd
6: until }d} ă ǫ
7: return wcur

Gradient-based optimization

Sampling Parameter learning
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The gradient vector (cf. Analysis I/II) of Lpwq is given by

∇wLpwq “∇w

˜
λ}w}2 `

Nÿ

n“1

xw, ϕpxn,ynqy `
Nÿ

n“1

logZpxn,wq
¸

“2λw`
Nÿ

n“1

˜
ϕpxn,ynq`

ÿ

yPY

expp´xw, ϕpxn,yqyqř
y1PY expp´xw, ϕpxn,y1qyqp´ϕpxn,yqq

¸

“2λw `
Nÿ

n“1

˜
ϕpxn,ynq ´

ÿ

yPY
ppy | xn,wqϕpxn,yq

¸

“2λw `
Nÿ

n“1

`
ϕpxn,ynq ´ Ey„ppy|xn,wqrϕpxn,yqs˘ .

Interpretation: we aim for expectation matching, that is

ϕpxn,ynq “ Ey„ppy|xn,wqrϕpxn,yqs for x1, . . . ,xn .

Hessian of Lpwq ˚
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By differentiating of ∇wLpwq, the Hessian matrix (cf. Analysis I/II) of Lpwq is
given by (see Exercise):

∆wLpwq “ 2λI `
Nÿ

n“1

˜
Ey„ppy|xn,wqrϕpxn,yqϕpxn,yqT s

´ Ey„ppy|xn,wqrϕpxn,yqsEy„ppy|xn,wqrϕpxn,yqsT
¸

.

Reminder : for any random vector X the covariance CovpX,Xq can be written as:

CovpX,Xq ∆“ ErpX ´ ErXsqpX ´ ErXsqT s “ ErXXT s ´ ErXsErXsT .

Note that ∆wLpwq is a covariance matrix, hence it is positive semi-definite.
Therefore, Lpwq is convex, which guarantees that every local minimum will also
be a global one minimum of Lpwq.

Gradient approximation via sampling
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∇wLpwq “ 2λw `
Nÿ

n“1

`
ϕpxn,ynq ´ Ey„ppy|xn,wqrϕpxn,yqs˘ .

In a naive way, the complexity of the gradient computation is OpK |V|NDq, where
■ N is the number of samples,
■ D is the dimension of weight vector,
■ K “ maxiPV |Yi| is (maximal) number of possible labels of each output nodes.

The computationally demanding part in the gradient computation has the form of
the expectation of ϕpx,yq with respect to the distribution ppy | x,wq.
As we have seen sampling methods often offer a viable alternative, as they provide
a universal tool for evaluating expectations over random variables.

Summary ˚

Sampling Parameter learning
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Probabilistic parameter learning aims at identifying a weight vector w˚ that
makes ppy | x,wq close to the true conditional label distribution dpy | xq in
terms of the expected KL divergence.

This is achieved by regularized maximum conditional likelihood training for
λ ą 0 as

w˚ P argmin
wPRD

Lpwq “ argmin
wPRD

λ}w}2 `
Nÿ

n“1

xw, ϕpxn,ynqy `
Nÿ

n“1

logZpxn,wq .

In the next lecture we will learn about various numerical solutions to calculate the
gradient

∇wLpwq “ 2λw `
Nÿ

n“1

`
ϕpxn,ynq ´ Ey„ppy|xn,wqrϕpxn,yqs˘ .
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