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Probabilistic parameter learning Loss function Loss-minimizing parameter learning Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Probabilistic parameter learning is the task of estimating the parameter w that
minimizes the expected dissimilarity of a parameterized model distribution
p(y | x,w) and the (unknown) conditional data distribution d(y | x):

KLiot(dp) = ) d(x) Y d(y | X)log W %)

o Py [x,w

Probabilistic parameter learning

The loss function A : Y x Y — R} measures the cost of predicting y’ when the
correct label is y. Loss minimizing parameter learning is the task of estimating
the parameter w that minimizes the expected loss:

Ey~dtyix) [Aly, f(x)],

where f(x) = argmaxyey p(y | x,w) is a prediction function, d(y | x) is the
(unknown) conditional data distribution, and A: Y x Y — R(J,’ is a loss function.
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Recap: Regularized maximum: conditional
likelihood training *

Probabilistic parameter learning Loss function Loss-minimizing parameter learning Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Numerical solution

Let p(y | x,w) = m exp(—(w, ¢(x,y))) be a probability distribution

parameterized by w € RP, and let D = {(x",y")}n=1,..n be a set of i.id.

training samples. For any A > 0, regularized maximum conditional likelihood

training chooses the parameter w*, such that In a naive way, the complexity of the gradient computation is O(KMND), where

" R N is the number of data samples,
e ai,%g;nuw) D is the dimension of weight vector,
K = maxey |V;| is the (maximal) number of possible labels of each output
= argmin A|w]|? + Z\w, e, y") + Z log Z(x",w) . variable (i € V).
weRD

n=1 n=1

L(w) = A|w|” + Y (w, o(x",y™") + D log Z(x", w) .

n=1 n=1

In a naive way, the complexity of line search is O(KVIN D) (for each evaluation of
L).
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Pseudo-code of Stochastic gradient descen

Stochastic gradient descent -

Probabilistic parameter learning Loss function Loss-minimizing parameter learning Probabilistic parameter learning Loss function Loss-minimizing parameter learning

If the training set D is too large, one can create a random subset D' — D and Input: Training set {(x™,y™)}"_;, number of iterations T' and step-sizes {n;}7;.
estimate the gradient Vy,L(w) on D’ only. In an extreme case, one may randomly Output: The learned weight vector w € RP.
select only one sample and calculate the gradient w0
cfort=1,...,T do
(x",y") < a randomly chosen training example

1
- 2
VS/( Y )L(W) =2Aw + Sﬁ’(xn:yn) - Eyr\p(y\x’RW) [‘P(Xn‘*y)] . 3
@ ve -—vEYIL(w)
5
6
7

This approach is called stochastic gradient descent (SGD). W WA nv
«— e

. end for
: return w

Note that line search is not possible, therefore, we need for an extra parameter,
referred to as step-size 7 for each iteration (t = 1,...,7T).

If the step-size is chosen correctly (e.g., 7 := n(t) = %), then SGD converges to
argmingcgp L(w). However, it needs more iterations than gradient descent, but
each iteration is (much) faster.
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Using of theoutput structure

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Two-stage learning

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Assume a set of factors F in a factor graph model, such that the vector p(x,y)
decomposes as p(x,y) = [pr(xF,yF)|Fer. Thus

]Ey~p(y|x,w) [‘p(x7 Y)] = [Ey~p(y|x,w) [LPF(XFV yF)]]FE]:
=[]EYF"‘P(YF‘XF1WF) ler(xr, yr)llrer

where

Eypp(yrlxrwe) [0F (X0 YE) = Y p(yF | X0, WE)or(XF, YF).
YreYVr

Factor marginals up = p(yr | xp, wr) are generally (much) easier to calculate
than the complete conditional distribution p(y | x, w).

They can be either computed exactly (e.g., by applying belief propagation yielding
complexity O(KFmaxl|V|N D), where | Finax| = maxper |N(F)] is the maximal
factor size) or approximated.
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End-to-end training: CRF as RNN *

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

The idea here is to split learning of energy functions into two steps:

1. learning unary energies via classifiers, and
2. learning their importance and the weighting factors of pairwise (and
higher-order) energy functions.

E(y;x) = Y wiEi(ysz) + Y, wiiEij(yi,y;) -
i€V (i,5)e€’

As an advantage, it results in a faster learning method. However, if local classifiers
for E; perform badly, then CRF learning cannot fix it.
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Piecewise learning

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Meanficld
Iteration

Hy =
Jo(U.Hy 1)

CRF as RNN network CRF-RNN

Source: Zheng et al. Conditional Random Fields as Recurrent Neural Networks, ICCV'15.

Evaluation on the PASCAL VOC 2012 Segmentation dataset:

‘ Unaries only  Fully connected CRF  End-to-end training
Mean loU (%) | 61.3 63.7 69.6
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Piecewise learning

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

N N
w* e argmin ) (Awrl® + Y (wr, or(xp, i) + Y log Zr(xh, wr))
weRP  por n=1 n=1

Consequently, piecewise training chooses the parameters w* = [w},|rer as
N N
wih € argmin A|wp|? + Z(Wp,gop(x},y}» + Z log Zp (X, wr) .
wreR n=1 n=1
One can perform gradient-based training for each factor as long as the individual
factors remain small.

Comparing ppw(y | x, w) with the exact p(y | x, w), we see that the exact Z(w)
does not factorize into a product of simpler terms, whereas its piecewise
approximation Zpw(w) factorizes over the set of factors.

The simplification made by piece-wise training of CRFs resembles two-stage
learning.
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E3

_Summary

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Assume a set of factors F in a factor graph model, such that

o(x,¥) = [¢r(xF, yF)lFer

We now approximate p(y | x, w) by a distribution that is a product over the
factors:

exp(—(wr, or(Xr,yF)))
ZF(XF7 WF) ’

pew(y | x,w) i= [ [ pr(yr | xpwr) = ||
FeF FeF

By minimizing the negative conditional log-likelihood function L(w), we get

N
w* € argmin L(w) ~ argmin A|w|? — 2 log H pr(yp | Xp, wWr)
weRDP

weRP n=1 FeF
N N
= argmin Z ()\HWFHZ + Z(Wp,gop(x},y}» + Z log ZF(X%,WF)> .
weRP peF n=1 n=1
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Piecewise learning: Deep Structured Mode

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Deep structured model: contextual deep CRF Feature map (low resoluion)
o

inary potentia net
uli-scale CNN

Painwise potential net
Mult-scale CNN

TH- A —
4 |
" e one node Node
inCRE gapn | feature vecor
' o - &
CRF graph
Prediction refinement stage :
vp-samgl & bounday reting Coarse-level prediction stage:
inference on contextual CRF one conecton —
Edge
L tental ouput
. . MCRFOIEN | fontre vector potental outpu
“
- 8 [
Low-resolution

prediction

Source: Lin et al.. Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation, CVPR'16.

75.3% mean loU on the PASCAL VOC 2012 Segmentation dataset.
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Summary cont’d

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Regularized maximum conditional likelihood training chooses the parameter

w* for A > 0, such that
N

N
w* e argmin Alw|? + 3w, (", y")) + 3 log Z(x", w)
weRP

n=1 n=1
The gradient might be expensive to calculate

N
VwL(VV) =2\w + Z (w(xn7yn) - Ey~p(y\x”,w)[¢(xn7y)]) .
n=1

B Stochastic gradient descent: the gradient is estimated on the subset of
training samples.

B Using of the input structure: Factor marginals jup = p(yr | xp, wr) are
generally (much) easier to calculate than the complete conditional distribution
p(y | x,w)

IEy~p(y|x,w) [‘P(Xv y)] = E[ Z p(yF | XF, WF)(\OF(XFV YF)] FeF *
YFEVF

B Two-stage learning: first learning and fix unary energies, and then learning
the weighting factors for the energy functions.
m  Piecewise training chooses the parameters w* = [w}]|rer as

N N
wh € argmin A|wrg|? + Z(wF,gpp(x},y%» + Z log Zp (X, W) .
wpeR n=1 n=1
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Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Loss function

071 loss *

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

In general, the loss function is application dependent. Arguably one of the most
common loss functions for labelling tasks is the 0/1 loss, that is

0, ify=y

Doy, y)=ly#y1]= {1 otherwise

Minimizing the expected loss of the 0/1 loss yields
y* eargminEy 0 [0/ (v, ¥')] = argmin Y p(y | )2/ (y,y')
y'ey y' yey
= argmin Z

Y& yey, yry'
=argmin B(y’; x) .
y'ey

p(y | %) = argmin (1 — p(y' | x)) = argmaxp(y’ | x)
y'ey y'ey

*

in this case is given by MAP

This shows that the optimal prediction f(x) =y
inference.
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Loss function

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

The goal is to make prediction y € ), as good as possible, about unobserved
properties (e.g., class label) for a given data instance x € X.

In order to measure quality of prediction f : X — ) we define a loss function
A:YxY—-RE,

that is A(y,y’) measures the cost of predicting y’ when the correct label is y.

Let us denote the model distribution by p(y | x) and the true (conditional) data
distribution by d(y | x). The quality of prediction can be expressed by the
expected loss (a.k.a. risk):

R (%) =By [AY, F(x)] = D dly [ %)A(y, f(x))
yey

~Ey <y [Ay, f())] 5

x) &~ d(y | x).

assuming that p(y

. Parameter lean

Hamming-loss *

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Another popular choice of loss function is the Hamming-loss, which counts the
percentage of mis-labeled variables:

1
An(y,y') = v Dlvi# il
5%

For example, in semantic image segmentation, the Hamming-loss is proportional
to the number of mis-classified pixels, whereas the 0/1 loss assigns the same cost
to every labeling that is not pixel-by—pixel identical to the correct one.

The expected loss of the Hamming-loss takes the form (see Exercise)
1
R () =1 = mp(Ye = S(x)i [ %)

which is minimized by predicting with f(x); = argmax,,cy, p(Yi = y; | x).
To evaluate this prediction rule, we rely on probabilistic inference.
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Loss function

Probabilistic parameter learning Loss-minimizing parameter learning

Loss-minimizing parameter learning

Regularized loss minimization

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Let us define the auxiliary function as
A
9(x,y;w) := —E(y;x, W) = W, 0(x,y)) .

We aim to find the parameter w* that minimizes
Eyatyix [AY, f(3)] = Eyvaryx) [A(y,argg)axg(x,y;vv))] .
y

However, d(y | x) is unknown, hence we use approximation:
N

1 n n n
]EyNd(y‘x)[A(y,argmaxg(x,y;w))] ~ N Z A(y",argmax g(x",y"; w)) .
yey yey

n=1
Moreover, we add the regularizer \|w/|? in order to avoid overfitting.
Therefore, we get the objective

N
1
w* € argmin \|w|? + — Z A(y", argmax g(x",y"; w)) .
N n=1 yey

weRP

Loss-minimizing parameter learning

Loss function Loss-minimizing parameter learning

Probabilistic parameter learning

Let D = {(x},y"),...,(xN,yV)} € & x Y be a set of i.i.d. samples from the
(unknown) data distribution d(y | x) and A : Y x ¥ — R be a loss function. The
task is to find a weight vector w* that leads to minimal expected loss, that is
w* € argmin By _ gy [A(y, f(%))]
weRP
for a prediction function f(x) = argmaxycy g(X,y;w), where g: X' x ¥ —> Ris
an auxiliary function, which is parameterized by w € R”.

Pros:

B We directly optimize for the quantity of interest, i.e. the expected loss.
B We do not need to compute the partition function Z.

Cons:

B There is no probabilistic reasoning to find w.
B We need to know the loss function already at training time.

Parameter leal

Digression: Support Vector Machine *

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Let us consider the binary classification problem. Suppose we are given a set of
labeled points {(x',¢1),..., (xN,tM)} (i.e. a training set), where x™ € RP and
t"e{-1,1} foralln=1,...,N.

The goal is to find a hyperplane y(x) := (w,x) + wy separating the input data
according to their labels.

y=1
y=0
y=-1

margin

Source: C. Bishop. PRML, 2016

More precisely, y(x™) > 0 for points having t" = 1 and y(x") < 0 for points
having t" = —1, that is " - y(x™) > 1 for all training points.
If such a hyperplane exists, then we say the training set is linearly separable.
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Digression: . Support Vector Machine *

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Redefining: the loss function

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Source: C. Bishop. PRML, 2016
We want to solve the following minimzation problem:
w* € argmin |w|? , subject to t"((w,x") +wp) =1, foralln=1,...,N.
w
Since the training set is not necessarily linearly separable , instead, we consider the
following minimization for A > 0 N
1
w* € argmin A|w]? + N Z max(0,1 — ¢"((w,x") + w)) .
w

n=1

where £(y) = max(0,1 — ty) is called the hinge loss function.
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Structured hinge loss

Loss function Loss-minimizing parameter learning

Probabilistic parameter learning

Let y = argmaxyy g(x",y; W), then we get

A", y) <A™ Y) +9(x", 7 w) — g(x", ¥y W)
< I;lg;((A(y”, y) +9(x" y;w) — g(x", y"; w))

Loy w)

which is called the structured hinge loss. Note that ¢ provides an upper bound
for the loss function A. Moreover ( is continuous and convex, since it is a
maximum over affine functions.

We remark that

Y w))

(3" w) Smax(Ay",y) + (", yiw) — g(x"

= max (O mex (AY™y) +9(x",y;w) — g(x”,y";w)))
YD)+ wop(x"y")) -

=max(A(y",y) — (w, p(x"
yey
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Subgradient *

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

N
1
w* € argmin A|w]? + — Z A(y",argmax g(x",y"; w)) .
N yey

weRD n=1

Note that the loss function A(y,argmaxy.y g(x,y; w)) is piecewise constant,
hence it is discontinuous, therefore we cannot use gradient-based techniques.

As a remedy we will replace A(y,y’) with a well behaved function £(x,y; w),
which is continuous and convex with respect to w.

Typically, ¢ is chosen such that it is an upper bound to A.

Therefore, we will get a new objective, that is

N
1
w* e argmin A|w|? + = Y £(x", ¥ w)
weRP an:‘ﬁ '
1, ., _ 1
= argm1n§\|wH ty Z Lx",y"w), with C = R
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Structured Support Vector Machine

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Let g(x,y; W) = —(W, ¢(x,y)) be an auxiliary function parameterized by w € R”.
For any C' > 0, structured support vector machine (S-SVM) training chooses
the parameter

c X
w' e argmlnL(w) = arg;mln—HwH2 — oyt w
weRD weRD N Z=:
with
(" y", w) = max(A(y",y) = (W, (", y)) + (W, o(x",¥™)) -

Both probabilistic parameter learning and S-SVM do regularized risk
minimization. For probabilistic parameter learning, the regularized conditional
log-likelihood function can be written as (C' = ¢?):

w* e alrgrnlanWH2 +C Z log Z exp ({w, p(x", y)) — (w, o(x", y"))) .
n=1 yey
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Pseudo-code of subgradient descent

minimization *

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Let f: RP — R be a convex, but not necessarily differentiable, function. A vector
v € RP is called a subgradient of f at wy, if

fw) =

flwo) + (v, w —wo) forall w.

(o) +{v,w-wo)

Wo

Source: http://www.nowozin.net/sebastian/cvpr201ltutorial/slides/talk-ssvm. pdf

Note that for differentiable f, the gradient v = V f(wyg) is the only subgradient.
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Subgradient descent minimization *

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Input: Tolerance € > 0 and step-sizes 7, := 7(t).
Output: The minimizer w of L.
1. w20
2:t<—0
3: repeat
4 t—t+1
5. veVL(w)
6 w—w—1n(t)Vv
7: until L changed less than ¢
8: return w
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Numerical solution

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

This method converges to global minimum, but rather inefficient if the objective
function L is non-differentiable.

For step sizes satisfying diminishing step size conditions:

o0
Jim 7 = 0, and ;)ntﬁoo

convergence is guaranteed.

Example:
1+m

=) i=

forany m >0 .
t+m

1, o C
min | w ~ E max(A(y",y) —(w " +{w oy .
a‘fiRén?H "+ N & yg}( " y) = (W, o(x", y)) + (W, o(x", y")))

As we have discussed, this function is non-differentiable. Therefore, we cannot use
gradient descent directly, so we have to use subgradients.

Source: http://www.nowozin.net/sebastian/cvpr20iitutorial/slides/talk-ssvm.pdf

For each y € Y, ( is a linear function, since it is the maximum over all y € V. In
order to calculate the subgradient at wo, one may find the maximal (active) y,
and then use v = V/{(wy).
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Calculating the subgradient

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Subgradient descent S-SVM learning *

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

N
avrvgeilgn %HWH2 + %n; I;lg;C(A(y”, y) =W, o(X", y)) +<{w, o(x™, y")) -

Let y € argmaxycy A(y™,y) — (W, p(x",y)). A subgradient v of L(w) is given
by

N
V(11" + 7 2 07) — (w9 + )

1 c _ ; n
5 Var(GIWI2 + 5 D (AG™3) — (wplx,3)) + (wap(x", "))
n=1
C N
=Wt DL e )+ p(x"y")
n=1
C N
=W+ D e(x"y") = p(x", argmax A(y", y) — (W, p(x",y))) = v .
n=1 yey
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Stochastic subgradient descent S-SVM
learning *

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

Input: Training set D = {(x!,y!),...,(x",¥")}, energies (x,y), loss function
A:YxY — R{, regularizer C, number of iterations T and step-sizes {1 }7_;.
Output: The weight vector w for the prediction function
f(X) = argmaxyey —<W, QO(X7 y)>
1. w0
2. fort=1,...,7T do
3 (x",y") < a randomly chosen training example
4y < argmaxyey A(y",y) — (W, o(x",y))
5. wew—n (Wt G- y) +e(x",y"))
6: end for

Note that each update step of w needs only one argmax-prediction, however we
will generally need many iterations until convergence.
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Next lecture; Summary of the course *

Probabilistic parameter learning Loss function

Loss-minimizing parameter learning

Proba-
bilistic
parameter
learning

Bayesian
network

Loss—
minimizing
parameter

Graphical earning

Learning
models

Computer
Inference i

Proba- Vision
bilistic Object
inference Human— detection
pose
MAP estimation Stereo

inference matching
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Input: Training set D = {(x",y™)}X_,, energies ¢(x,y), loss function

A:Yx)Y — Rar, regularizer C, and step-sizes {m}g;l.
Output: the weight vector w for the prediction function
F3x) = argma, ey —(w, p(x, ).
1. w0
2. fort=1,...,7 do
3: forn=1,...,N do

4 ¥« argmaxyey A(y", y) —{w, p(x",y))
5: Ve —p(x",§) + o(x",y")
6: end for
c&
7 w<—w—77t(W+NZv>
n=1
[ —)
v

8: end for

The step-size can be chosen as 7, := n(t) = % forallt =1,...,T. Note that each
update of w needs an argmax-prediction for each training sample.
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Summary of S-SVM learning *

Probabilistic parameter learning Loss function Loss-minimizing parameter learning

We are given a training set D = {(x!,y'),...,(x",y")} € X x J and a problem
specific loss function A : Y x ) — ]Ra'. The task is to learn parameter w for a
prediction function

f(x) = argmax —(w, ¢(x,y)) = argmin(w, ¢(x,y))
yey yey

that minimizes expected loss on the training set.

S-SVM solution derived by the maximum margin framework:
(w,p(x",y)) <<w,o(x™", ") + Aly™,y)

that is the predicted output is enforced to be not worse than the correct one by a
margin.

We have seen that S-SVM training ends up a convex optimization problem, but
it is non-differentiable. Furthermore it requires repeated argmax predictions.
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