Weekly Exercise 2

Dr. Csaba Domokos

Technische Universität München, Computer Vision Group
April 24th, 2017 (submission deadline: May 8th, 2017)

Probability theory

(10 Points)
Exercise 1 (Bayes' rule, 1 point). Let A, B, C be events. Assuming $P(B \mid C) \neq 0$, prove that

$$
P(A \mid B \cap C)=\frac{P(B \mid A \cap C) \cdot P(A \mid C)}{P(B \mid C)} .
$$

Solution. By applying the definition of conditional probability, we get

$$
\begin{aligned}
\frac{P(B \mid A \cap C) \cdot P(A \mid C)}{P(B \mid C)} & =\frac{P(A \cap B \cap C) \cdot P(A \cap C)}{P(A \cap C) \cdot P(C)} \frac{P(C)}{P(B \cap C)}=\frac{P(A \cap B \cap C)}{P(B \cap C)} \\
& =P(A \mid B \cap C) .
\end{aligned}
$$

Exercise 2 (Bayes' rule, 5 points). Siegfried the ornithologist does a study on the greenspeckled swallow. Since he has a huge collection of bird photographs he wants to find all images depicting a green-speckled swallow. Due to it's distinctive features it is an easy task for Eduard, Siegfried's friend and computer vision scientist, to program a green-speckled swallow detector that marks all images containing such a bird. Unfortunately the detector does not work perfectly. If the image contains a green-speckled swallow the detector marks it correctly with a chance of 99.5%. If the image does not contain a green-speckled swallow the detector marks it correctly with a chance of 99.3%. The bird is also very rare: If we randomly draw an image from the collection, there is only a chance of 0.001% that the image contains a green-speckled swallow.
a) Do a formal modeling of the experiment. How does the discrete probability space look like?
b) What is the probability that a green-speckled swallow is on a given image, if the detector gives a positive answer?
c) What is the probability that a green-speckled swallow is on a given image, if the detector gives a negative answer?

Solution. a) The probability space (Ω, \mathcal{A}, P) is defined by

$$
\begin{aligned}
& \Omega=\{(s,+),(s,-),(n,+),(n,-)\}, \\
& \mathcal{A}=\{A \subset \Omega\} \\
& P: \mathcal{A} \rightarrow[0,1]
\end{aligned}
$$

where the symbols $s, n,+,-$ have the following meaning:

$$
\begin{array}{ll}
s & : \text { image contains a green-speckled swallow } \\
n & : \text { image does not contain a green-speckled swalow } \\
+ & : \text { detector reports a green-speckled swallow } \\
- & \text { : detector reports no green-speckled swallow }
\end{array}
$$

b) Let us introduce the following events

$$
\begin{array}{ll}
A=\{(s,+),(s,-)\} & : \text { the image contains a green-speckled swallow } \\
B=\{(s,+),(n,+)\} & : \text { the detector reports positive answer } \\
C=\{(s,-),(n,-)\} & : \text { the detector reports negative answer } \\
D=\{(n,+),(n,-)\} & : \text { the image does not contain green-speckled swallow }
\end{array}
$$

From the text we know that

$$
P(B \mid A)=0.995, \quad P(C \mid D)=0.993 \quad \text { and } \quad P(A)=0.00001 .
$$

Note that $\bar{A}=D$ and $\bar{B}=C$. Therefore

$$
\begin{aligned}
P(A \mid B) & =\frac{P(B \mid A) \cdot P(A)}{P(B)} \\
& =\frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A)+P(B \mid D) \cdot P(D)} \\
& =\frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A)+(1-P(C \mid D)) \cdot(1-P(A))}=1.41942 \cdot 10^{-3} .
\end{aligned}
$$

c)

$$
\begin{aligned}
P(A \mid C) & =\frac{P(C \mid A) \cdot P(A)}{P(C)} \\
& =\frac{(1-P(B \mid A)) \cdot P(A)}{P(C \mid A) \cdot P(A)+P(C \mid D) \cdot P(D)} \\
& =\frac{(1-P(B \mid A)) \cdot P(A)}{(1-P(B \mid A)) \cdot P(A)+P(C \mid D) \cdot(1-P(A))}=5.03529 \cdot 10^{-8} .
\end{aligned}
$$

Exercise 3 (Independence, 2 points). Let A and B be events. Show that

$$
P(A \mid B)=P(A) \quad \Leftrightarrow \quad P(A \cap B)=P(A) \cdot P(B) .
$$

Solution. Let us start with the definition.
$" \Rightarrow$ " Assume that $P(A \mid B)=P(A)$. Therefore,

$$
\frac{P(A \cap B)}{P(B)}=P(A) \quad \Rightarrow \quad P(A \cap B)=P(A) \cdot P(B) .
$$

$" \Leftarrow$ " Assume that $P(A \cap B)=P(A) P(B)$. Therefore,

$$
\frac{P(A \cap B)}{P(B)}=P(A) \quad \Rightarrow \quad P(A \mid B)=P(A)
$$

Exercise 4 (Conditional independence, 2 points). Let A, B and C be events. Show that the two definitions of the conditional independence are equivalent, that is,

$$
P(A \mid C)=P(A \mid B \cap C) \quad \Leftrightarrow \quad P(A \cap B \mid C)=P(A \mid C) \cdot P(B \mid C) .
$$

Solution. Let us start with the definition.
$" \Rightarrow$ " Assume that $P(A \mid C)=P(A \mid B \cap C)$. Therefore,

$$
\frac{P(A \cap C)}{P(C)}=\frac{P(A \cap B \cap C)}{P(B \cap C)} \Rightarrow P(A \cap B \cap C)=\frac{P(A \cap C) \cdot P(B \cap C)}{P(C)} .
$$

We then have

$$
P(A \cap B \mid C)=\frac{P(A \cap B \cap C)}{P(C)}=\frac{P(A \cap C) \cdot P(B \cap C)}{P(C) P(C)}=P(A \mid C) \cdot P(B \mid C) .
$$

$" \Leftarrow$ " Assume that $P(A \cap B \mid C)=P(A \mid C) P(B \mid C)$. Therefore,

$$
\frac{P(A \cap B \cap C)}{P(C)}=\frac{P(A \cap C)}{P(C)} \frac{P(B \cap C)}{P(C)} \Rightarrow \quad \frac{P(A \cap C)}{P(C)}=\frac{P(A \cap B \cap C)}{P(B \cap C)} .
$$

We then have

$$
P(A \mid C)=\frac{P(A \cap C)}{P(C)}=\frac{P(A \cap B \cap C)}{P(B \cap C)}=P(A \mid B \cap C),
$$

