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Probability distributions (8 Points)

Exercise 1 (Probability distribution, 2 points). We throw two “fair” dice. Let us define

a random variable X as the sum of the numbers showing on the dice. Define and draw

the cumulative distribution function FX .

Solution. The cumulative distribution function FX is defined as

FX(x) =


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0 if x < 2
1
36 if 2 ≤ x < 3
1
12 if 3 ≤ x < 4
1
6 if 4 ≤ x < 5
5
18 if 5 ≤ x < 6
5
12 if 6 ≤ x < 7
7
12 if 7 ≤ x < 8
13
18 if 8 ≤ x < 9
5
6 if 9 ≤ x < 10
11
12 if 10 ≤ x < 11
35
36 if 11 ≤ x < 12

1 if 12 ≤ x .

The graph of FX looks as
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Exercise 2 (Density function, 1 point). Let f : R → R be a function defined as follows

f(x) =











x, if 0 < x < 1 ,

2− x, if 1 < x < 2 ,

0, otherwise .

Is it possible that f is a density function?

Solution. f(x) is obviously non-negative. We need to check whether
∫

∞

−∞
f(x)dx = 1

holds.
∫

∞

−∞

f(x)dx =

∫ 0

−∞

0 dx+

∫ 1

0
x dx+

∫ 2

1
2− x dx+

∫

∞

2
0 dx

=

[

x2

2

]1

0

+ 2(2− 1)−

[

x2

2

]2

1

=
1

2
+ 2−

3

2
= 1 .

Therefore the answer is positive that is f(x) can be a density function.

Exercise 3 (Random variable and expectation, 2 points). Let X be a discrete random

variable with the possible values of 1, 2 and 3, where the corresponding probabilities

are given as

P (X = 1) =
1

3
, P (X = 2) =

1

2
, P (X = 3) =

1

6
.

a) Define and draw the cumulative distribution function FX .

b) What is the expected value of X?

Solution. a) The cumulative distribution function FX : R → R is defined as

FX(x) =


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



0 if x < 1 ,
1
3 if 1 ≤ x < 2 ,
5
6 if 2 ≤ x < 3 ,

1 if 3 ≤ x .

b) The expected value is calculated as

E[X] = 1
1

3
+ 2

1

2
+ 3

1

6
=

11

6
.

Exercise 4 (Random variable and expectation, 3 points). In order to express his grati-

tude, Siegfried invites Eduard to a pub for a couple of beers. There, they start playing

a friendly game of darts. The dart board is a perfect disk of radius 10cm. If a dart falls

within 1cm of the center, 100 points are scored. If the dart hits the board between 1 and

3cm from the center, 50 points are scored, if it is at a distance of 3 to 5cm 25 points are

scored and if it is further away than 5cm 10 points are scored. As Siegfried and Eduard

are both quite experienced dart players, they hit the dart board every time.
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a) Define a random variable X corresponding to the score of throws.

b) What is the expected value of the scores?

Solution. a) The probability space (Ω,A, P ) is given by

Ω = {(x, y) ∈ R
2 |

√

x2 + y2 ≤ 10} ,

A =

{

A ⊂ Ω |

∫

Ω
χA(x) dx exists.

}

,

and P : A → [0, 1], where

P (A) =

∫

Ω χA(x)dx

100π
.

The random variable corresponding to the score of throws is defined as X : Ω →

{10, 25, 50, 100}, where

X(x) =




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

100, if 0 ≤ ‖x‖2 ≤ 1,

50, if 1 ≤ ‖x‖2 ≤ 3,

25, if 3 ≤ ‖x‖2 ≤ 5,

10, if 5 ≤ ‖x‖2 ≤ 10.

b) The expected value of the scores is calculated as follows:

E[X] = 10 · P (X = 10) + 25 · P (X = 25) + 50 · P (X = 50) + 100 · P (X = 100)

= 10
75

100
+ 25

16

100
+ 50

8

100
+ 100

1

100
= 16.5 .

Expectation-maximization algorithm (4 Points)

Exercise 5 (Expectation-maximization algorithm, 4 Points). An alternative route in

the derivation of the Expectation-maximization algorithm is to maximize the expected

the log-posterior ln p(θ | X) instead of the expected log-likelihood. Show that for this case

that the M step yields

θ
(t+1) ∈ argmaxθ

(

Q(θ,θ(t)) + ln p(θ)
)

.

Therefore, one can assume the prior distribution of the parameters θ (for example, to

avoid singularities).

Hint: consider the maximization problem

θ
(t+1) ∈ argmaxθ E[ln p(θ | X,Z) | X,θ(t)] .

Solution. In our derivation of the EM algorithm (i.e. maximizing the log-likelihood) we

have obtained the M step as follows:

θ
(t) ∈ argmaxθ Q(θ,θ(t−1)) = argmaxθ E[ln p(X,Z | θ) | X,θ(t)] .
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Consider the following maximization (of the log-posterior):

θ
(t+1) ∈ argmaxθ E[ln p(θ | X,Z) | X,θ(t)]

= argmaxθ
∑

Z

p(Z | X,θ(t)) ln p(θ | X,Z)

= argmaxθ
∑

Z

p(Z | X,θ(t))
(

ln p(X,Z | θ) + ln p(θ)− ln p(X,Z)
)

=argmaxθ
(

ln p(θ) + E[ln p(X,Z | θ) | X,θ(t)]
)

=argmaxθ

(

Q(θ,θ(t−1)) + ln p(θ)
)

.
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