Weekly Exercise 4

Dr. Csaba Domokos
Technische Universität München, Computer Vision Group May 22nd, 2017 (submission deadline: May 22nd, 2017)

Probability distributions

Exercise 1 (Probability distribution, 2 points). We throw two "fair" dice. Let us define a random variable X as the sum of the numbers showing on the dice. Define and draw the cumulative distribution function F_{X}.

Solution. The cumulative distribution function F_{X} is defined as

$$
F_{X}(x)= \begin{cases}0 & \text { if } x<2 \\ \frac{1}{36} & \text { if } 2 \leq x<3 \\ \frac{1}{12} & \text { if } 3 \leq x<4 \\ \frac{1}{6} & \text { if } 4 \leq x<5 \\ \frac{5}{18} & \text { if } 5 \leq x<6 \\ \frac{5}{12} & \text { if } 6 \leq x<7 \\ \frac{7}{12} & \text { if } 7 \leq x<8 \\ \frac{13}{18} & \text { if } 8 \leq x<9 \\ \frac{5}{6} & \text { if } 9 \leq x<10 \\ \frac{11}{12} & \text { if } 10 \leq x<11 \\ \frac{35}{36} & \text { if } 11 \leq x<12 \\ 1 & \text { if } 12 \leq x\end{cases}
$$

The graph of F_{X} looks as

Exercise 2 (Density function, 1 point). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined as follows

$$
f(x)= \begin{cases}x, & \text { if } 0<x<1 \\ 2-x, & \text { if } 1<x<2 \\ 0, & \text { otherwise }\end{cases}
$$

Is it possible that f is a density function?
Solution. $f(x)$ is obviously non-negative. We need to check whether $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$ holds.

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) \mathrm{d} x & =\int_{-\infty}^{0} 0 \mathrm{~d} x+\int_{0}^{1} x \mathrm{~d} x+\int_{1}^{2} 2-x \mathrm{~d} x+\int_{2}^{\infty} 0 \mathrm{~d} x \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{1}+2(2-1)-\left[\frac{x^{2}}{2}\right]_{1}^{2} \\
& =\frac{1}{2}+2-\frac{3}{2}=1
\end{aligned}
$$

Therefore the answer is positive that is $f(x)$ can be a density function.
Exercise 3 (Random variable and expectation, 2 points). Let X be a discrete random variable with the possible values of 1,2 and 3 , where the corresponding probabilities are given as

$$
P(X=1)=\frac{1}{3}, \quad P(X=2)=\frac{1}{2}, \quad P(X=3)=\frac{1}{6} .
$$

a) Define and draw the cumulative distribution function F_{X}.
b) What is the expected value of X ?

Solution. a) The cumulative distribution function $F_{X}: \mathbb{R} \rightarrow \mathbb{R}$ is defined as

$$
F_{X}(x)= \begin{cases}0 & \text { if } x<1 \\ \frac{1}{3} & \text { if } 1 \leq x<2 \\ \frac{5}{6} & \text { if } 2 \leq x<3 \\ 1 & \text { if } 3 \leq x\end{cases}
$$

b) The expected value is calculated as

$$
\mathbb{E}[X]=1 \frac{1}{3}+2 \frac{1}{2}+3 \frac{1}{6}=\frac{11}{6} .
$$

Exercise 4 (Random variable and expectation, 3 points). In order to express his gratitude, Siegfried invites Eduard to a pub for a couple of beers. There, they start playing a friendly game of darts. The dart board is a perfect disk of radius 10 cm . If a dart falls within 1 cm of the center, 100 points are scored. If the dart hits the board between 1 and 3 cm from the center, 50 points are scored, if it is at a distance of 3 to 5 cm 25 points are scored and if it is further away than 5 cm 10 points are scored. As Siegfried and Eduard are both quite experienced dart players, they hit the dart board every time.
a) Define a random variable X corresponding to the score of throws.
b) What is the expected value of the scores?

Solution. a) The probability space (Ω, \mathcal{A}, P) is given by

$$
\begin{aligned}
& \Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid \sqrt{x^{2}+y^{2}} \leq 10\right\} \\
& \mathcal{A}=\left\{A \subset \Omega \mid \int_{\Omega} \chi_{A}(x) \mathrm{d} x \text { exists. }\right\},
\end{aligned}
$$

and $P: \mathcal{A} \rightarrow[0,1]$, where

$$
P(A)=\frac{\int_{\Omega} \chi_{A}(x) \mathrm{d} x}{100 \pi} .
$$

The random variable corresponding to the score of throws is defined as $X: \Omega \rightarrow$ $\{10,25,50,100\}$, where

$$
X(x)= \begin{cases}100, & \text { if } 0 \leq\|x\|_{2} \leq 1 \\ 50, & \text { if } 1 \leq\|x\|_{2} \leq 3 \\ 25, & \text { if } 3 \leq\|x\|_{2} \leq 5 \\ 10, & \text { if } 5 \leq\|x\|_{2} \leq 10\end{cases}
$$

b) The expected value of the scores is calculated as follows:

$$
\begin{aligned}
\mathbb{E}[X] & =10 \cdot P(X=10)+25 \cdot P(X=25)+50 \cdot P(X=50)+100 \cdot P(X=100) \\
& =10 \frac{75}{100}+25 \frac{16}{100}+50 \frac{8}{100}+100 \frac{1}{100}=16.5 .
\end{aligned}
$$

Expectation-maximization algorithm

(4 Points)
Exercise 5 (Expectation-maximization algorithm, 4 Points). An alternative route in the derivation of the Expectation-maximization algorithm is to maximize the expected the log-posterior $\ln p(\boldsymbol{\theta} \mid \mathbf{X})$ instead of the expected \log-likelihood. Show that for this case that the M step yields

$$
\boldsymbol{\theta}^{(t+1)} \in \operatorname{argmax}_{\boldsymbol{\theta}}\left(Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right)+\ln p(\boldsymbol{\theta})\right) .
$$

Therefore, one can assume the prior distribution of the parameters $\boldsymbol{\theta}$ (for example, to avoid singularities).

Hint: consider the maximization problem

$$
\boldsymbol{\theta}^{(t+1)} \in \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}\left[\ln p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{Z}) \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}\right] .
$$

Solution. In our derivation of the EM algorithm (i.e. maximizing the log-likelihood) we have obtained the M step as follows:

$$
\boldsymbol{\theta}^{(t)} \in \operatorname{argmax}_{\boldsymbol{\theta}} Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}\right)=\operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}\left[\ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}\right] .
$$

Consider the following maximization (of the log-posterior):

$$
\begin{aligned}
\boldsymbol{\theta}^{(t+1)} & \in \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}\left[\ln p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{Z}) \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}\right] \\
& =\operatorname{argmax}_{\boldsymbol{\theta}} \sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}\right) \ln p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{Z}) \\
& =\operatorname{argmax}_{\boldsymbol{\theta}} \sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}\right)(\ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})+\ln p(\boldsymbol{\theta})-\ln p(\mathbf{X}, \mathbf{Z})) \\
& =\operatorname{argmax}_{\boldsymbol{\theta}}\left(\ln p(\boldsymbol{\theta})+\mathbb{E}\left[\ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}\right]\right) \\
& =\operatorname{argmax}_{\boldsymbol{\theta}}\left(Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}\right)+\ln p(\boldsymbol{\theta})\right) .
\end{aligned}
$$

