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The EM algorithm for mixtures of Gaussians (6 Points)

Exercise 1 (E step, 1 Point). Consider a mixture of Gaussians with K component. As-

sume that we are given N data samples {xn}
N
n=1 and a current guess of parameters

θold = (π,µ,Σ). Show that

p(zn | xn,θ
old) =

πk N (xn | µk,Σk)
∑K

l=1 πlN (xn | µl,Σl)

∆
= γk(xn) for all n = 1, . . . , N .

Solution. First we apply the Bayes’ rule and substitute the likelihood p(x | z,θ), the

joint distribution p(z | θ) and the definition of the density function p(x | θ) corre-

sponding to the mixture of K Gaussians.

p(zn | xn,θ
old) =

p(xn | zn,θ
old) p(zn | θold)

p(xn | θold)

=

∏K
k=1

(

N (xn | µk,Σk)
)znk π

znk

k
∑K

l=1 πlN (xn | µl,Σl)

=
πk N (xn | µk,Σk)

∑K
l=1 πlN (xn | µl,Σl)

∆
= γk(xn) .

Exercise 2 (M step, 5 Points). Assume a mixture of Gaussians with K component and

N data samples {xn}
N
n=1. The log-likelihood function is given as

L(θ) =
N
∑

n=1

K
∑

k=1

γk(xn)
(

lnπk + lnN (xn | µk,Σk)
)

.

a) Show that the optimal choice with respect to the mean vectors µk for all k = 1, . . . ,K

is given as

argmax
µk

L(θ) =

∑N
n=1 γk(xn)xn
∑N

m=1 γk(xm)
.

Hint: for a symmetric matrix A ∈ R
n×n and a vector x ∈ R

n,

∂

∂x
x
T
Ax = 2Ax .
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b) Show that the optimal choice with respect to the covariance matrices Σk for all k =

1, . . . ,K is given as

argmax
Σk

L(θ) =

∑N
n=1 γk(xn)(xn − µk)(xn − µk)

T

∑N
m=1 γk(xm)

.

Hint: for a symmetric matrix X ∈ R
n×n and vectors a,b ∈ R

n,

∂

∂X
a
T
X

−1
b = −X

−T
ab

T
X

−T ,

and for a non-singular matrix X ∈ R
n×n,

∂

∂X
|X| = |X| X−1 .

Solution. a) We calculate the derivative of L(θ) w.r.t. µk.

∂

∂µk

L(θ) =
N
∑

n=1

γk(xn)
1

N (xn | µk,Σk)

∂

∂µk

N (xn | µk,Σk) .

Let us now consider the derivative of a Gaussian w.r.t. µk.

∂

∂µk

N (xn | µk,Σk) =
1

√

|2πΣk|

∂

∂µk

exp
(

−
1

2
(xn − µk)

T
Σ

−1
k (xn − µk)

)

=−
1

√

|2πΣk|
exp

(

−
1

2
(xn − µk)

T
Σ

−1
k (xn − µk)

)

Σ
−1
k (xn − µk)

=−N (xn | µk,Σk)Σ
−1
k (xn − µk) .

By substituting back and setting the derivative of L(θ) w.r.t. µk to 0, we get

∂

∂µk

L(θ) = −
N
∑

n=1

γk(xn)

N (xn | µk,Σk)
N (xn | µk,Σk)Σ

−1
k (xn − µk) = 0

∑N
n=1 γk(xn) xn
∑N

m=1 γk(xm)
= µk .

b) We calculate the derivative of L(θ) w.r.t. Σk.

∂

∂Σk

L(θ) =
N
∑

n=1

γk(xn)
1

N (xn | µk,Σk)

∂

∂Σk

N (xn | µk,Σk)

=
N
∑

n=1

γk(x)

N (xn | µk,Σk)

∂

∂Σk

(

1
√

|2πΣk|
exp

(

−
1

2
(xn − µk)

T
Σ

−1
k (xn − µk)

)

)

.

Let us first calculate the following derivatives:

∂

∂Σk

1
√

|2πΣk|
=

1

(2π)
D

2

∂

∂Σk

|Σk|
− 1

2 =
1

(2π)
D

2

−
1

2
|Σk|

− 3

2 |Σk|Σ
−1
k =

−Σ
−1
k

2
√

|2πΣk|
.
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∂

∂Σk

exp
(

−
1

2
(xn − µk)

T
Σ

−1
k (xn − µk)

)

= exp
(

−
1

2
(xn − µk)

T
Σ

−1
k (xn − µk)

) ∂

∂Σk

(

−
1

2
(xn − µk)

T
Σ

−1
k (xn − µk)

)

= exp
(

−
1

2
(xn − µk)

T
Σ

−1
k (xn − µk)

)−1

2
(−Σ

−T
k )(xn − µk)(xn − µ)TΣ−T

k

=
1

2
exp

(

−
1

2
(xn − µk)

T
Σ

−1
k (xn − µk)

)

Σ
−1
k (xn − µk)(xn − µk)

T
Σ

−1
k .

Now we are at the position to calculate the derivative of a Gaussian w.r.t. Σk.

∂

∂Σk

(

1
√

|2πΣk|
exp

(

−
1

2
(xn − µk)

T
Σ

−1
k (xn − µk)

)

)

=
−Σ

−1
k

2
√

|2πΣk|
exp

(

−
1

2
(xn − µk)

T
Σ

−1
k (xn − µk)

)

+
1

2

1
√

|2πΣk|
exp

(

−
1

2
(xn − µk)

T
Σ

−1
k (xn − µk)

)

Σ
−1
k (xn − µk)(xn − µk)

T
Σ

−1
k

=−
1

2
Σ

−1
k N (xn | µk,Σk) +

1

2
N (xn | µk,Σk)Σ

−1
k (xn − µk)(xn − µk)

T
Σ

−1
k

=
N (xn | µk,Σk)

2
Σ

−1
k

(

(xn − µk)(xn − µk)
T
Σ

−1
k − 1

)

.

Therefore, the derivative of L(θ) w.r.t. Σk is as follows.

∂

∂Σk

L(θ) =
N
∑

n=1

γk(xn)

N (xn | µk,Σk)

N (xn | µk,Σk)

2
Σ

−1
k

(

(xn − µk)(xn − µk)
T
Σ

−1
k − 1

)

=
Σ

−1
k

2

N
∑

n=1

γk(xn)
(

(xn − µk)(xn − µk)
T
Σ

−1
k − 1

)

.

Setting the derivative of L(θ) w.r.t. Σk to 0, we get that

Σ
−1
k

2

N
∑

n=1

γk(xn)
(

(xn − µk)(xn − µk)
T
Σ

−1
k − 1

)

= 0

N
∑

n=1

γk(xn)(xn − µk)(xn − µk)
T
Σ

−1
k =

N
∑

m=1

γk(xm)

∑N
n=1 γk(xn)(xn − µk)(xn − µk)

T

∑N
m=1 γk(xm)

= Σk .

Minimum cut and maximum flow (7 Points)

Exercise 3 (Flow, 4 Points). Show that the following two definitions are equivalent.

a) Let (V, E , c, s, t) be a flow network with non-negative edge weights. A function

f : V × V → R is called a flow if it satisfies the following properties:
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i) Capacity constraint: f(i, j) ≤ c(i, j) for all i, j ∈ V .

ii) Skew-symmetry: f(i, j) = −f(j, i) for all i, j ∈ V .

iii) Flow conservation:
∑

j∈V f(i, j) = 0 for all i ∈ V \ {s, t}.

b) Let (V, E , c, s, t) be a flow network with non-negative edge weights. A function

f : E → R
+ is called a flow if it satisfies the following two properties:

i) f(i, j) ≤ c(i, j) for all (i, j) ∈ E .

ii) For all i ∈ V \ {s, t}
∑

(i,j)∈E

f(i, j) =
∑

(j,i)∈E

f(j, i) .

Solution. a) ⇒ b) Suppose we are given a flow f satisfying the definition given in a).

Let us introduce f ′ : E → R
+ such that f ′(i, j) := max(0, f(i, j)) for all (i, j) ∈ E .

i) 0 ≤ f ′(i, j) = max(0, f(i, j)) ≤ max(0, c(i, j)) = c(i, j) for all (i, j) ∈ E .

ii) For all i ∈ V \ {s, t}, we have

∑

(i,j)∈E

f ′(i, j) =
∑

(i,j)∈E, f(i,j)≥0

f(i, j)

=
∑

(i,j)∈E, f(j,i)≤0

f(i, j)

=
∑

(j,i)∈E, f(j,i)≥0

f(j, i)

=
∑

(j,i)∈E

f ′(j, i) .

b) ⇒ a) Suppose we are given a flow f satisfying the definition given in b). Let us

introduce f ′ : E → R such that

f ′(i, j) =

{

f(i, j) if (i, j) ∈ E

−f(i, j) if (j, i) ∈ E .

i) c(i, j) ≥ f(i, j) ≥ f ′(i, j) for all (i, j) ∈ E .

ii) By definition f ′(i, j) = −f ′(j, i) for all (i, j) ∈ E .

iii) For all i ∈ V \ {s, t}, we have

∑

(i,j)∈E

f ′(i, j) =
∑

(i,j)∈E

f(i, j) =
∑

(j,i)∈E

f(j, i) = −
∑

(i,j)∈E

f ′(i, j) ,

which completes the proof.

Exercise 4 (Flow, 3 Points). Let G = (V, E , c, s, t) be a flow network, and let f be a flow

in G. Show that the following equalities hold:
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a) For all X ⊆ V , we have f(X,X) = 0 .

b) For all X,Y ⊆ V , we have f(X,Y ) = −f(Y,X) .

c) For all X,Y,Z ⊆ V with X ∩ Y = ∅, we have the sums

f(X ∪ Y,Z) = f(X,Z) + f(Y,Z) and f(Z,X ∪ Y ) = f(Z,X) + f(Z, Y ) .

Solution. a) Assume that b) is already held. Then f(X,X) = −f(X,X) for all X ⊆ V ,

which means that f(X,X) = 0.

b) For all X,Y ⊆ V , we have

f(X,Y ) =
∑

a∈X

∑

b∈Y

f(a, b) =
∑

a∈X

∑

b∈Y

−f(b, a) = −
∑

b∈Y

∑

a∈X

f(b, a) = −f(Y,X) .

c) Suppose that X,Y ⊆ V and X ∩ Y = ∅. Then for any Z ⊆ V , we have

f(X∪Y,Z) =
∑

a∈X∪Y

∑

b∈Z

f(a, b) =
∑

a∈X

∑

b∈Z

f(a, b)+
∑

a∈Y

∑

b∈Z

f(a, b) = f(X,Z)+f(Y,Z) .

One can prove similarly the second equality, too.
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Programming (6 Points)

Exercise 5 (Gaussian Mixture Model Estimation, 6 Points). Estimate two mixtures of

Gaussians to model the densities of the foreground and background pixels based on

their intensity. Apply the estimated models to the input image and segment the fore-

ground and background regions. An exemplar test image is shown in Figure 1 (a) (you

can find the image in the supplementary material in2329-exercise_05_supp.zip).

The specific requirement is as follows.

(a) (b) (c)

Figure 1: (a) test image. (b) an exemplar bounding box. (c) foreground segmentation

based the trained model pF (I).

1. Write a program taking an image and a bounding box of the foreground region,

given by the coordinates of the top-left and bottom-right corners, as input argu-

ment. An example is shown Figure 1 (b). Estimate the density of the foreground

ffg(I), I ∈ R
3 using all pixels inside the bounding box, where ffg(I) is a mixture

of Gaussians with K = 5 components and I is the RGB values of a pixel.

2. Based on the same bounding box, estimate the density of the background pbg(I)

using all pixels outside the bounding box, where fbg(I) is a mixture of Gaussians

with K = 5 components.

3. Compute the binary segmentation of the input image by making use of the two

estimated densities. Check the results.

Hints: the input bounding box should mostly contain banana, i.e. the foreground

region. You may initialize the mixture of Gaussians with random Gaussian kernels.

Note that the covariance matrix should not be singular, during the estimation. If the

covariance matrix does become singular, you may restart the estimation from a differ-

ent initialization all over again. Alternatively, can you think of way to better initialize

the optimization?
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