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Metric (6 Points)

Exercise 1 (Metric, semi-metric, 6 Points). Show that the followings hold:

a) The truncated absolute distance, defined as d : R× R → R
+

0

d(x, y) = min(K, |x − y|), for some K ∈ R
+ ,

is a metric.

b) The truncated quadratic function, defined as d : R× R → R
+
0

d(x, y) = min(K, |x − y|2), for some K ∈ R
+ ,

is a semi-metric.

c) The weighted Potts-model, defined as d : N× N → R
+
0

d(ℓ1, ℓ2) = w · Jℓ1 6= ℓ2K, for some w ∈ R
+ ,

is a metric.

Solution. a) Let d(x, y) = min(K, |x − y|) for some K ∈ R
+. For all x, y, z ∈ R

1)

d(x, y) = 0 ⇔ min(K, 0) = 0 ⇔ |x− y| = 0 ⇔ x = y .

2)

d(x, y) = min(K, |x − y|) = min(K, |y − x|) = d(y, x) .

3) We will check the following cases:

• Assume that K ≤ |x− y| and K ≤ |y − z|, then

d(x, y)+d(y, z) = min(K, |x−y|)+min(K, |y−z|) = K+K ≥ min(K, |x−z|) = d(x, z) .

• Assume that K ≤ |x− y| and |y − z| < K, then

d(x, y)+d(y, z) = min(K, |x−y|)+min(K, |y−z|) = K+|y−z| ≥ min(K, |x−z|) = d(x, z) .

• Assume that |x− y| < K and K ≤ |y − z|, then

d(x, y)+d(y, z) = min(K, |x−y|)+min(K, |y−z|) = |x−y|+K ≥ min(K, |x−z|) = d(x, z) .
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• Assume that |x− y| < K and |y − z| < K, then

d(x, y) + d(y, z) = min(K, |x − y|) + min(K, |y − z|)

= |x− y|+ |y − z| ≥ |x− z| ≥ min(K, |x − z|) = d(x, z) .

Therefore d(x, y) is a metric.

b) Let d(x, y) = min(K, |x − y|2) for some K ∈ R
+. For all x, y ∈ R

1)

d(x, y) = 0 ⇔ min(K, |x − y|2) = 0 ⇔ |x− y|2 = 0 ⇔ x = y .

2)

d(x, y) = min(K, |x − y|2) = min(K, |y − x|2) = d(y, x) .

Therefore, d(x, y) is a semi-metric.

3) Let d(ℓ1, ℓ2) = w · Jℓ1 6= ℓ2K for some w ∈ R
+. For all ℓ1, ℓ2, ℓ3 ∈ N

1)

d(ℓ1, ℓ2) = 0 ⇔ w · Jℓ1 6= ℓ2K ⇔ ℓ1 = ℓ2 .

2)

d(ℓ1, ℓ2) = w · Jℓ1 6= ℓ2K = w · Jℓ2 6= ℓ1K = d(ℓ2, ℓ1) .

3) Assume that ℓ1 = ℓ2 = ℓ3, then

d(ℓ1, ℓ2) + d(ℓ2, ℓ3) = 0 = d(ℓ1, ℓ3) ,

otherwise

d(ℓ1, ℓ2) + d(ℓ2, ℓ3) ≥ w ≥ d(ℓ1, ℓ3) .

Therefore, d(ℓ1, ℓ2) is a metric.

Programming (6 Points)

Exercise 2 (Binary image segmentation via maxFlow algorithm, 6 Points). Solve the

binary image segmentation problem on the image in Figure 1 by applying the Boykov–

Kolmogorov maxFlow algorithm.

For binary segmentation yi ∈ B for all i ∈ V , where V stands for the set of pixels,

furthermore 0 and 1 denote the background and the foreground, respectively. Let us

consider the following energy function for w ∈ R
+:

E(y;x) =
∑

i∈V

Ei(yi;xi) + w
∑

{i,j}∈E

Eij(yi, yj ;xi, xj) , (1)

where E includes 4-neighboring pixels and xi consists of the RGB intensities of the

pixel i.
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Figure 1: The test image for binary image segmentation.

Use the GMM models fbg and ffg you trained in Exercise 4 in order to define the

unary energy functions for all i ∈ V :

Ei(0;xi) = − log(fbg(xi)) ,

Ei(1;xi) = − log(ffg(xi)) .

Moreover, simply apply the Potts-model in order to define the pairwise energy func-

tions for all (i, j) ∈ E :

Eij(yi, yj;xi, xj) = Jyi 6= yjK .

Construct a flow network corresponding to the defined energy function in Eq. (1)

and solve the maximum flow problem by making use of the Boykov–Kolmogorov algo-

rithm. You may use the provided maxFlow implementation of the algorithm found in

the supplementary material in2329-exercise_06_supp.zip1.

• Choose a set of different values for w, and report what you observe.

• How are the obtained segmentation results compared to the results you obtained

in Exercise 4 (i.e. without having pairwise terms, that is regularization)?

Minimum cut and maximum flow (4 Points)

Exercise 3 (Edmonds–Karp algorithm, 4 Points). Solve the maximum flow problem

corresponding to the flow network in Figure 2 by applying the Edmonds–Karp algorithm.

Find the minimum s− t cut as well. Draw the residual network and the flow graph for

each iteration.

1You may also find the implementation online http://pub.ist.ac.at/~vnk/software/maxflow-v3.04.src.zip
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Figure 2: A flow network.

Solution. The maximum flow problem can be solved in three iterations using the

Edmonds–Karp algorithm. The residual network and the flow for each iteration are

shown below in Figure ??.
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Iteration 0; the residual network
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Iteration 0; the flow network
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Iteration 1; the residual network
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Iteration 1; the flow network
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Iteration 2; the residual network
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Iteration 2; the flow network
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Iteration 3; the residual network
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Iteration 3; the flow network
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The minimum s − t

cut with the value of 23

Figure 3: Solution for the maximum flow problem by applying the Edmonds–Karp al-

gorithm. The shortest path that applied as an augmenting path in the next iteration is

marked with red. The minimum cut is marked with dashed lines and the two parti-

tions of the nodes are marked with red and blue, respectively.
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