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Fast Primal-Dual Schema (6 Points)

Exercise 1 (Primal-dual LP, 4 Points). Let us consider the following factor graph model

with Y1 = {1, 2, 3} and Y2 = {1, 2}

F1

Y1

F12

Y2

F2

where the factor energies are defined as follows:

E1(y1) =











5 , if y1 = 1

2 , if y1 = 2

7 , if y1 = 3

E2(y2) = y2

E12(y1, y2) 1 2

1 0 1

2 1 0

3 4 1

Define the primal and the dual (relaxed) linear programs

min
x

〈c,x〉 max
y

〈b,y〉

Ax = b ATy ≤ c

x ≥ 0

for the multi-labeling problem corresponding to the factor graph above:

E(y) = E1(y1) + E2(y2) + E12(y1, y2) .

Solution. The indicator variables x with the corresponding costs c are given as

x =
[

xT
1

xT
2

]T
=

[

x1:1 x1:2 x1:3 x2:1 x2:2 x12:11 x12:12 x12:21 x12:22 x12:31 x12:32
]T

,

c =
[

cT
1

cT
2

]T
=

[

5 2 7 1 2 0 1 1 0 4 1
]T

.
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The coefficient matrix A with the constant terms b for the constraints are given as

A =























1 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0

0 0 0 −1 0 1 0 1 0 1 0

0 0 0 0 −1 0 1 0 1 0 1

−1 0 0 0 0 1 1 0 0 0 0

0 −1 0 0 0 0 0 1 1 0 0

0 0 −1 0 0 0 0 0 0 1 1























and b =























1

1

0

0

0

0

0























.

The dual variables are given as

y =
[

yT
1

yT
2

yT
3

]T
=

[

y1 y2 y12:1 y12:2 y21:1 y21:2 y21:3
]T

.

Exercise 2 (Complementary slackness, 2 Points). Let (x,y) be a pair of integral primal

and dual feasible solutions to the linear programming relaxation

min
x

〈c,x〉 max
y

〈b,y〉

Ax = b ATy ≤ c

x ≥ 0

corresponding to the multi-labeling problem. Show that if (x,y) satisfies the relaxed

primal complementary slackness conditions, that is

∀xj > 0 ⇒
∑

i

aijyi ≥
cj

εj
,

then x is an ε-approximation to the optimal integral solution x∗ with ε = maxj εj .

Solution. For all xj > 0 assume that

εj(A
Ty)j ≥ cj .

Therefore,

〈c,x〉 ≤ ε〈ATy,x〉 = ε〈y,Ax〉 ≤ ε〈y,b〉 .

Thus for ε ≥ 1, (x,y) is an ε-approximation to the optimal integral solution x∗:

〈c,x∗〉 ≤ 〈c,x〉 ≤ ε〈b,y〉 ≤ ε〈c,x∗〉 .

Programming (6 Points)

Exercise 3 (Semantic image segmentation with α-expansion, 6 Points). Consider the

energy function for w ≥ 0

E(y;x) =
∑

i∈V

Ei(yi;xi) + w
∑

i,j∈E

Eij(yi, yj ;xi, xj) , (1)
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for the multi-labeling problem, i.e. y ∈ LV , where L stands for the label set. V is the set

of pixels of x and E consists of all four-neighboring pixels. Implement the α-expansion

algorithm to solve semantic image segmentation for the images shown in figure 1.

Try to choose different values for the parameter w for Equation (1) and compare the

segmentation results.

Figure 1: The test images for semantic image segmentation.

These test images have been obtained from the MSRC image understanding dataset1,

which contains 21 classes, i.e. L = {1, 2, . . . , 21}. The meaning of the classes are given

in the 21class.txt file. Use it to check whether your results are reasonable.

To define the unary energy functions Ei, use the *.c_unary files provided in the

supplementary material (supp_07). Each test image has its own unary file, specified

by the same filename. From each unary file, you can read out a K × H × W array

of float numbers. The H and W are the image height and width, and K = 21 is the

number of classes. This array contains the 21-class probability distribution for each

pixel. You may find the multilabel_demo.cpp in the supplementary material, which

demonstrates how to load a unary file and read out the corresponding probability

values. The unary energy functions Ei for all i ∈ V are then defined as the negative

log-likelihood.

The pairwise energy functions Eij are defined by the contrast sensitive Potts-model

Eij(yi, yj ;xi, xj) = exp(−λ‖xi − xj‖
2)Jyi 6= yjK ,

where xi is the intensity vector for pixel i, and you may choose λ = 0.5.

1https://www.microsoft.com/en-us/research/project/image-understanding/
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