Weekly Exercise 7

Dr. Csaba Domokos Technische Universität München, Computer Vision Group June 19th, 2017

Fast Primal-Dual Schema

Exercise 1 (Primal-dual LP, 4 Points). Let us consider the following *factor graph* model with $\mathcal{Y}_1 = \{1, 2, 3\}$ and $\mathcal{Y}_2 = \{1, 2\}$

where the factor energies are defined as follows:

$$E_1(y_1) = \begin{cases} 5 , & \text{if } y_1 = 1 \\ 2 , & \text{if } y_1 = 2 \\ 7 , & \text{if } y_1 = 3 \end{cases}$$

$$E_2(y_2) = y_2$$

$$\frac{E_{12}(y_1, y_2) | 1 | 2 \\ 1 | 0 | 1 \\ 2 | 1 | 0 \\ 3 | 4 | 1 \end{cases}$$

Define the primal and the dual (relaxed) linear programs

 $\begin{array}{ll} \min_{\mathbf{x}} \ \langle \mathbf{c}, \mathbf{x} \rangle & \max_{\mathbf{y}} \ \langle \mathbf{b}, \mathbf{y} \rangle \\ \mathbf{A}\mathbf{x} = \mathbf{b} & \mathbf{A}^T \mathbf{y} \leq \mathbf{c} \\ \mathbf{x} \geq \mathbf{0} \end{array}$

for the *multi-labeling problem* corresponding to the factor graph above:

$$E(\mathbf{y}) = E_1(y_1) + E_2(y_2) + E_{12}(y_1, y_2)$$
.

Solution. The indicator variables
$$\mathbf{x}$$
 with the corresponding costs \mathbf{c} are given as

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1^T & \mathbf{x}_2^T \end{bmatrix}^T = \begin{bmatrix} x_{1:1} & x_{1:2} & x_{1:3} & x_{2:1} & x_{2:2} & x_{12:11} & x_{12:12} & x_{12:21} & x_{12:22} & x_{12:31} & x_{12:32} \end{bmatrix}^T ,$$

$$\mathbf{c} = \begin{bmatrix} \mathbf{c}_1^T & \mathbf{c}_2^T \end{bmatrix}^T = \begin{bmatrix} 5 & 2 & 7 & 1 & 2 & 0 & 1 & 1 & 0 & 4 & 1 \end{bmatrix}^T .$$

(6 Points)

SS 2017

The coefficient matrix **A** with the constant terms **b** for the constraints are given as

	(1	1	1	0	0	0	0	0	0	0	0)	١		(1)	
	0	0	0	1	1	0	0	0	0	0	0			1	
	0	0	0	-1	0	1	0	1	0	1	0			0	
$\mathbf{A} =$	0	0	0	0	-1	0	1	0	1	0	1	and	b =	0	
	-1	0	0	0	0	1	1	0	0	0	0			0	
	0	-1	0	0	0	0	0	1	1	0	0			0	
	0	0	-1	0	0	0	0	0	0	1	1 /	1		(0)	/

The dual variables are given as

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1^T & \mathbf{y}_2^T & \mathbf{y}_3^T \end{bmatrix}^T = \begin{bmatrix} y_1 & y_2 & y_{12:1} & y_{12:2} & y_{21:1} & y_{21:2} & y_{21:3} \end{bmatrix}^T.$$

Exercise 2 (Complementary slackness, 2 Points). Let (x, y) be a pair of *integral primal* and *dual feasible* solutions to the linear programming relaxation

$$\begin{array}{ll} \min_{\mathbf{x}} \langle \mathbf{c}, \mathbf{x} \rangle & \max_{\mathbf{y}} \langle \mathbf{b}, \mathbf{y} \rangle \\ \mathbf{A}\mathbf{x} = \mathbf{b} & \mathbf{A}^T \mathbf{y} \leq \mathbf{c} \\ \mathbf{x} > \mathbf{0} \end{array}$$

corresponding to the multi-labeling problem. Show that if (x, y) satisfies the *relaxed primal complementary slackness conditions*, that is

$$\forall x_j > 0 \quad \Rightarrow \quad \sum_i a_{ij} y_i \ge \frac{c_j}{\varepsilon_j} \;,$$

then **x** is an ε -approximation to the *optimal integral solution* **x**^{*} with $\varepsilon = \max_{j} \varepsilon_{j}$.

Solution. For all $x_j > 0$ assume that

$$\varepsilon_j(\mathbf{A}^T\mathbf{y})_j \ge c_j$$

Therefore,

$$\langle \mathbf{c}, \mathbf{x} \rangle \leq \varepsilon \langle \mathbf{A}^T \mathbf{y}, \mathbf{x} \rangle = \varepsilon \langle \mathbf{y}, \mathbf{A} \mathbf{x} \rangle \leq \varepsilon \langle \mathbf{y}, \mathbf{b} \rangle$$

Thus for $\varepsilon \geq 1$, (\mathbf{x}, \mathbf{y}) is an ε -approximation to the optimal integral solution \mathbf{x}^* :

$$\langle \mathbf{c}, \mathbf{x}^*
angle \leq \langle \mathbf{c}, \mathbf{x}
angle \leq arepsilon \langle \mathbf{b}, \mathbf{y}
angle \leq arepsilon \langle \mathbf{c}, \mathbf{x}^*
angle$$

Programming

Exercise 3 (Semantic image segmentation with α **-expansion**, 6 Points). Consider the *energy function* for $w \ge 0$

$$E(\mathbf{y}; \mathbf{x}) = \sum_{i \in \mathcal{V}} E_i(y_i; x_i) + w \sum_{i,j \in \mathcal{E}} E_{ij}(y_i, y_j; x_i, x_j) \quad , \tag{1}$$

(6 Points)

for the *multi-labeling problem*, i.e. $\mathbf{y} \in \mathcal{L}^{\mathcal{V}}$, where \mathcal{L} stands for the label set. \mathcal{V} is the set of pixels of \mathbf{x} and \mathcal{E} consists of all four-neighboring pixels. Implement the α -expansion algorithm to solve **semantic image segmentation** for the images shown in figure 1. Try to choose different values for the parameter w for Equation (1) and compare the segmentation results.

Figure 1: The test images for semantic image segmentation.

These test images have been obtained from the MSRC image understanding dataset¹, which contains 21 classes, i.e. $\mathcal{L} = \{1, 2, ..., 21\}$. The meaning of the classes are given in the 21class.txt file. Use it to check whether your results are reasonable.

To define the **unary energy functions** E_i , use the *.c_unary files provided in the supplementary material (supp_07). Each test image has its own unary file, specified by the same filename. From each unary file, you can read out a $K \times H \times W$ array of float numbers. The H and W are the image height and width, and K = 21 is the number of classes. This array contains the 21-class probability distribution for each pixel. You may find the multilabel_demo.cpp in the supplementary material, which demonstrates how to load a unary file and read out the corresponding probability values. The unary energy functions E_i for all $i \in \mathcal{V}$ are then defined as the *negative log-likelihood*.

The **pairwise energy functions** E_{ij} are defined by the *contrast sensitive Potts-model*

$$E_{ij}(y_i, y_j; x_i, x_j) = \exp(-\lambda ||x_i - x_j||^2) [\![y_i \neq y_j]\!] ,$$

where x_i is the intensity vector for pixel *i*, and you may choose $\lambda = 0.5$.

¹https://www.microsoft.com/en-us/research/project/image-understanding/