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Mean field approximation (4 points)

Exercise 1 (Naive Mean Field, 4 points). Assume a graphical model G = (V, E) and

consider a factorized distribution in the following form:

q(y) =
∏

i∈V

qi(yi) . (1)

a) Show that the marginal distribution of a factor F is given by:

µF,yF (q) = qN(F )(yF ) =
∏

i∈N(F )

qi(yi) .

b) Show that the entropy decomposes as:

H(y) =
∑

i∈V

Hi(yi) ,

in other words,

∑

y

p(y) log p(y) =
∑

i∈V

∑

yi∈Yi

−qi(yi) log qi(yi) .

Solution. a) First remark that

∑

y
′∈Y ,

y′
1
=y1

q(y) =
∑

y
′∈Y ,

y′
1
=y1

∏

i∈V

qi(yi)

= q1(y1)
∑

y2∈Y2

. . .
∑

yk∈Yk

q2(y2) . . . qk(yk)

= q1(y1)
∑

y2∈Y2

q2(y2)

︸ ︷︷ ︸

1

. . .
∑

yk∈Yk

qk(yk)

︸ ︷︷ ︸

1

= q1(y1) .
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Similarly, one can compute

µF,yF (q) =
∑

y
′∈Y ,

y
′

F=yF

q(y′)

=
∑

y
′∈Y ,

y
′

F
=yF

∏

i∈V

qi(y
′
i)

=
∏

i∈N(F )

qi(yi)
∑

y′j∈Yj ,

j∈V\N(F )

∏

k∈V\N(F )

qk(y
′
k)

︸ ︷︷ ︸

1

=
∏

i∈N(F )

qi(yi) .

b) We show that given a set of independent random variables, the joint entropy can be

calculated as the sum of the entropy of each variable. This property can readily be

shown for two independent random variables x, y. That is

H(xy) =
∑

x

∑

y

−p(xy) log p(xy)

=
∑

x

∑

y

−p(x)p(y)
(
log p(x) + log p(y)

)

=
∑

x

∑

y

−p(x)p(y) log p(x) +
∑

x

∑

y

−p(x)p(y) log p(y)

=
∑

x

−p(x) log p(x)
∑

y

p(y) +
∑

x

p(x)
∑

y

−p(y) log p(y)

=
∑

x

−p(x) log p(x) +
∑

y

−p(y) log p(y)

= H(x) +H(y) .

It is then obvious that this property can be generalized to a set of arbitrary num-

ber of independent random variables. Now, given the assumption (1), i.e. yi are

independent ∀i ∈ V , hence

H(y) =
∑

i∈V

H(yi) =
∑

i∈V

∑

yi∈Yi

−qi(yi) log qi(yi) .

Programming (8 points)

Exercise 2 (Semantic segmentation by applying a fully connected CRF model, 8

points). Let us consider the problem of semantic image segmentation. Assuming a la-

bel set L, we define the energy function for y ∈ LV as

E(y) =
∑

i∈V

Ei(yi) +
∑

(i,j)∈E

Eij(yi, yj) , (2)
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on a fully connected CRF model, i.e. E = {(i, j) ∈ V × V | i < j}.

The goal of the exercise is to implement the naïve mean field approximation in or-

der to obtain the results for test images shown in Figure 1. As you have seen in the pre-

vious exercises, these test images have been obtained from the MSRC image understanding dataset1,

which contains 21 classes, i.e. L = {1, 2, . . . , 21}. The meaning of the classes are given

in the 21class.txt file.

Figure 1: Test images for semantic image segmentation.

To define the unary energy functions Ei for all i ∈ V , use the *.c_unary files

provided in the supplementary material (in2329-supplementary_material_10.zip).

Each test image has its own unary file, specified by the same filename. From each

unary file, you can read out a K × H × W array of float numbers. The H and W are

the image height and width, and K = 21 is the number of classes. This array contains

the 21-class probability distribution for each pixel. The unary energy functions Ei are

then defined as the negative log-likelihood:

Ei(yi = l) = − log(pl) .

To define the pairwise energy functions Eij for (i, j) ∈ E , use the contrast-sensitive

Potts model:

Eij(yi, yj) = Jyi 6= yjK

(

w1 exp

(

−
|pi − pj|

2

2θ2α
−

|Ii − Ij |
2

2θ2β

)

+ w2 exp

(

−
|pi − pj |

2

2θ2γ

))

,

where pi stands for the location of the pixel i and Ii denotes its intensity vector, more-

over the parameters are chosen as

w1 = 10, w2 = 3, θα = 80, θβ = 13, and θγ = 3 .

1https://www.microsoft.com/en-us/research/project/image-understanding/

3

https://www.microsoft.com/en-us/research/project/image-understanding/
https://www.microsoft.com/en-us/research/project/image-understanding/

