Weekly Exercise 10

Dr. Csaba Domokos
Technische Universität München, Computer Vision Group

July 17th, 2017

Parameter Learning

Exercise 1 (Prior distribution on $\mathbf{w}, 2$ points). Let $\mathcal{D}=\left\{\left(\mathbf{x}^{1}, \mathbf{y}^{1}\right),\left(\mathbf{x}^{2}, \mathbf{y}^{2}\right), \ldots,\left(\mathbf{x}^{N}, \mathbf{y}^{N}\right)\right\}$ be a set of identically and independently distributed (i.i.d.) training samples. Assuming \mathbf{w} is a random vector with prior distribution $p(\mathbf{w})$, show that the posterior distribution $p(\mathbf{w} \mid \mathcal{D})$ can be written as

$$
p(\mathbf{w} \mid \mathcal{D})=p(\mathbf{w}) \prod_{n=1}^{N} \frac{p\left(\mathbf{y}^{n} \mid \mathbf{x}^{n}, \mathbf{w}\right)}{p\left(\mathbf{y}^{n} \mid \mathbf{x}^{n}\right)}
$$

Solution. Since we are given i.i.d. training samples, we get

$$
\begin{aligned}
p(\mathbf{w} \mid \mathcal{D}) & =\frac{p\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{N}, \mathbf{x}^{1}, \ldots, \mathbf{x}^{N}, \mathbf{w}\right)}{p\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{N}, \mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right)} \\
& =\frac{p\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{N} \mid \mathbf{x}^{1}, \ldots, \mathbf{x}^{N}, \mathbf{w}\right) p\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right) p(\mathbf{w})}{p\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{N} \mid \mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right) p\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right)} \\
& =\frac{p\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{N} \mid \mathbf{x}^{1}, \ldots, \mathbf{x}^{N}, \mathbf{w}\right) p(\mathbf{w})}{p\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{N} \mid \mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right)} \\
& =p(\mathbf{w}) \prod_{n=1}^{N} \frac{p\left(\mathbf{y}^{n} \mid \mathbf{x}^{n}, \mathbf{w}\right)}{p\left(\mathbf{y}^{n} \mid \mathbf{x}^{n}\right)} .
\end{aligned}
$$

Exercise 2 (Negative regularized conditional log-likelihood, 6 points). Consider the objective function $L(\mathbf{w})$ corresponding to the negative regularized conditional log-likelihood:

$$
L(\mathbf{w})=\lambda\|\mathbf{w}\|^{2}+\sum_{n=1}^{N}\left\langle\mathbf{w}, \varphi\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right)\right\rangle+\sum_{n=1}^{N} \log Z\left(\mathbf{x}^{n}, \mathbf{w}\right) .
$$

It has been shown in the lecture that the gradient of $\mathcal{L}(\mathbf{w})$ w.r.t. \mathbf{w} is given as

$$
\nabla_{\mathbf{w}} L(\mathbf{w})=2 \lambda \mathbf{w}+\sum_{n=1}^{N}\left(\varphi\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right)-\mathbb{E}_{\mathbf{y} \sim p\left(\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w}\right)}\left[\varphi\left(\mathbf{x}^{n}, \mathbf{y}\right)\right]\right) .
$$

Show that the Hessian of $L(\mathbf{w})$ is given as

$$
\begin{aligned}
\Delta_{\mathbf{w}} L(\mathbf{w})=2 \lambda \mathbf{I}+\sum_{n=1}^{N}\left(\mathbb{E}_{\mathbf{y} \sim p\left(\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w}\right)}\right. & {\left[\varphi\left(\mathbf{x}^{n}, \mathbf{y}\right) \varphi\left(\mathbf{x}^{n}, \mathbf{y}\right)^{\boldsymbol{\top}}\right] } \\
& \left.-\mathbb{E}_{\mathbf{y} \sim p\left(\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w}\right)}\left[\varphi\left(\mathbf{x}^{n}, \mathbf{y}\right)\right] \mathbb{E}_{\mathbf{y} \sim p\left(\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w}\right)}\left[\varphi\left(\mathbf{x}^{n}, \mathbf{y}\right)\right]^{\top}\right) .
\end{aligned}
$$

Solution. Let us denote the gradient vector by $g(\mathbf{w})=\nabla_{\mathbf{w}} L(\mathbf{w})$. Notice that we have $g(\mathbf{w}), \mathbf{w}, \varphi\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right) \in \mathbb{R}^{d}$. The Hessian matrix is calculated, by definition, as

$$
\Delta_{\mathbf{w}} L(\mathbf{w})=\left(\begin{array}{cccc}
\frac{\partial g_{1}}{\partial w_{1}} & \frac{\partial g_{2}}{\partial w_{1}} & \cdots & \frac{\partial g_{d}}{\partial w_{1}} \\
\frac{\partial g_{1}}{\partial w_{2}} & \frac{\partial g_{2}}{\partial w_{2}} & \cdots & \frac{\partial g_{d}}{\partial w_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial g_{1}}{\partial w_{n}} & \frac{\partial g_{2}}{\partial w_{n}} & \cdots & \frac{\partial g_{d}}{\partial w_{d}}
\end{array}\right)
$$

We denote each element in the Hessian matrix by $h_{i j}$, where $h_{i j}=\frac{\partial g_{i}}{\partial w_{j}}$. Recall that the gradient is given as

$$
g(\mathbf{w})=2 \lambda \mathbf{w}+\sum_{n=1}^{N} \varphi\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right)-\sum_{n=1}^{N} \sum_{\mathbf{y}^{n} \in \mathcal{Y}} \frac{\exp \left(-\left\langle\mathbf{w}, \varphi\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right)\right\rangle\right)}{\sum_{\mathbf{y}^{\prime} \in \mathcal{Y}} \exp \left(-\left\langle\mathbf{w}, \varphi\left(\mathbf{x}^{n}, \mathbf{y}^{\prime}\right)\right\rangle\right)} \varphi\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right) .
$$

For $h_{i j}=\frac{\partial g_{i}}{\partial w_{j}}$, we get

$$
\begin{aligned}
\frac{\partial g_{i}}{\partial w_{j}}= & 2 \lambda \llbracket i=j \rrbracket-\sum_{n=1}^{N} \sum_{\mathbf{y}^{n} \in \mathcal{Y}} \varphi_{i}\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right) \frac{\partial}{\partial w_{j}} \frac{\exp \left(-\left\langle\mathbf{w}, \varphi\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right)\right\rangle\right)}{\sum_{\mathbf{y}^{\prime} \in \mathcal{Y}} \exp \left(-\left\langle\mathbf{w}, \varphi\left(\mathbf{x}^{n}, \mathbf{y}^{\prime}\right)\right\rangle\right)} \\
= & 2 \lambda \llbracket i=j \rrbracket+\sum_{n=1}^{N} \sum_{\mathbf{y}^{n} \in \mathcal{Y}} \varphi_{i}\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right) \frac{\exp \left(-\left\langle\mathbf{w}, \varphi\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right)\right\rangle\right) \varphi_{j}\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right)}{\sum_{\mathbf{y}^{\prime} \in \mathcal{Y}} \exp \left(-\left\langle\mathbf{w}, \varphi\left(\mathbf{x}^{n}, \mathbf{y}^{\prime}\right)\right\rangle\right)} \\
& -\sum_{n=1}^{N} \sum_{\mathbf{y}^{n} \in \mathcal{Y}} \varphi_{i}\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right) \frac{\exp \left(-\left\langle\mathbf{w}, \varphi\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right)\right\rangle\right) \sum_{\mathbf{y}^{\prime} \in \mathcal{Y}} \exp \left(-\left\langle\mathbf{w}, \varphi\left(\mathbf{x}^{n}, \mathbf{y}^{\prime}\right)\right\rangle\right) \varphi_{j}\left(\mathbf{x}^{n}, \mathbf{y}^{\prime}\right)}{\left(\sum_{\mathbf{y}^{\prime} \in \mathcal{Y}} \exp \left(-\left\langle\mathbf{w}, \varphi\left(\mathbf{x}^{n}, \mathbf{y}^{\prime}\right)\right\rangle\right)\right)^{2}} \\
= & 2 \lambda \llbracket i=j \rrbracket+\sum_{n=1}^{N} \sum_{\mathbf{y}^{n} \in \mathcal{Y}} \varphi_{i}\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right) \varphi_{j}\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right) p\left(\mathbf{y}^{n} \mid \mathbf{x}^{n}, \mathbf{w}\right) \\
& -\sum_{n=1}^{N}\left(\sum_{\mathbf{y}^{n} \in \mathcal{Y}} \varphi_{i}\left(\mathbf{x}^{n}, \mathbf{y}^{n}\right) p\left(\mathbf{y}^{n} \mid \mathbf{x}^{n}, \mathbf{w}\right)\right)\left(\sum_{\mathbf{y}^{\prime} \in \mathcal{Y}} \varphi_{j}\left(\mathbf{x}^{n}, \mathbf{y}^{\prime}\right) p\left(\mathbf{y}^{\prime} \mid \mathbf{x}^{n}, \mathbf{w}\right)\right) \\
= & 2 \lambda \llbracket i=j \rrbracket+\sum_{n=1}^{N} \mathbb{E}_{\mathbf{y} \sim p\left(\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w}\right)}\left[\varphi_{i}\left(\mathbf{x}^{n}, \mathbf{y}\right) \varphi_{j}\left(\mathbf{x}^{n}, \mathbf{y}\right)\right] \\
& -\sum_{n=1}^{N} \mathbb{E}_{\mathbf{y} \sim p\left(\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w}\right)}\left[\varphi_{i}\left(\mathbf{x}^{n}, \mathbf{y}\right)\right] \mathbb{E}_{\mathbf{y} \sim p\left(\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w}\right)}\left[\varphi_{j}\left(\mathbf{x}^{n}, \mathbf{y}\right)\right] .
\end{aligned}
$$

Putting all $h_{i j}$ together back into matrix representation yields the following Hessian matrix:

$$
\begin{aligned}
\Delta_{\mathbf{w}} L(\mathbf{w})=2 \lambda \mathbf{I}+\sum_{n=1}^{N}\left(\mathbb{E}_{\mathbf{y} \sim p\left(\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w}\right)}\right. & {\left[\varphi\left(\mathbf{x}^{n}, \mathbf{y}\right) \varphi\left(\mathbf{x}^{n}, \mathbf{y}\right)^{\boldsymbol{\top}}\right] } \\
& \left.-\mathbb{E}_{\mathbf{y} \sim p\left(\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w}\right)}\left[\varphi\left(\mathbf{x}^{n}, \mathbf{y}\right)\right] \mathbb{E}_{\mathbf{y} \sim p\left(\mathbf{y} \mid \mathbf{x}^{n}, \mathbf{w}\right)}\left[\varphi\left(\mathbf{x}^{n}, \mathbf{y}\right)\right]^{\top}\right)
\end{aligned}
$$

Programming

Exercise 3 (Gibbs sampling, 6 points). Let us consider the problem of binary image segmentation and solve it by performing probabilistic inference via Gibbs sampling. In this particular exercise, we are going to design a cow-detector for the test images in Figure 1, which should label a pixel as foreground if it belongs to a cow, and background otherwise.

Figure 1: The test images for binary image segmentation to detect cows.
We define the following energy function for $\mathbf{y} \in\{0,1\}^{\mathcal{V}}$ such that 0 and 1 denote the background and the foreground, respectively:

$$
E(\mathbf{y})=\sum_{i \in \mathcal{V}} E_{i}\left(y_{i}\right)+w \sum_{(i, j) \in \mathcal{E}} E_{i j}\left(y_{i}, y_{j}\right),
$$

where $w \in \mathbb{R}^{+}$is a parameter, and \mathcal{V} stands for the set of pixels, and \mathcal{E} includes all pairs of 4-neighboring pixels.

To define the unary energy functions E_{i}, use the provided $* . y m l$ files. Each test image has its own data file, specified by the same filename. In each data file, you can read out a $H \times W$ array of float numbers. The H and W are the image height and width, and each float value p_{i} corresponds to the probability of that the given pixel belongs to the foreground. We provide the cow_detector.cpp to demonstrate how to load a data file and read out the corresponding probability values. The unary energy functions E_{i} for all $i \in \mathcal{V}$ are then defined as the negative log-likelihood:

$$
E_{i}\left(y_{i}\right)= \begin{cases}-\log \left(1-p_{i}\right) & \text { if } y_{i}=0 \\ -\log \left(p_{i}\right) & \text { if } y_{i}=1\end{cases}
$$

The pairwise energy functions are defined as the contrast-sensitive Potts model for all $(i, j) \in \mathcal{E}$,

$$
E_{i j}\left(y_{i}, y_{j} ; x_{i}, x_{j}\right)=\exp \left(-\lambda\left\|x_{i}-x_{j}\right\|^{2}\right) \cdot \llbracket y_{i} \neq y_{j} \rrbracket .
$$

where x_{i} denotes the intensities of the pixel i and $\lambda=0.5$.
Implement the Gibbs sampling algorithm to achieve probabilistic inference and calculate the binary segmentation as well. Choose different values for w and give the range of w that generates the best segmentation performance.

