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Parameter Learning (8 points)

Exercise 1 (Prior distribution on w, 2 points). Let D = {(x!,y!), (x%,¥?),..., x",y™)}
be a set of identically and independently distributed (i.i.d.) training samples. Assum-
ing w is a random vector with prior distribution p(w), show that the posterior distribu-
tion p(w|D) can be written as

Solution. Since we are given i.i.d. training samples, we get

(w | D) p(yl,...,yN,xl,...,xN,w)
p\w =
p(yl, ..., yN,xt ... xN)
_p(yl,...,yN\xl,...,XN,W)p(xl,...,xN)p(w)
T YV [ ) oY)
_p(yl,...,yN\xl,...,xN,W)p(W)
(yl,-.-JNIX1 ,x)
pr "x", w)
L p(y"x")

Exercise 2 (Negative regularized conditional log-likelihood, 6 points). Consider the
objective function L(w) corresponding to the negative reqularized conditional log-likelihood:

N N
L(w) = AMw|> + > (w, o(x",y™) + Y _log Z(x",w) .
n=1

n=1

It has been shown in the lecture that the gradient of £L(w) w.r.t. w is given as
Vw =2\w + Z pr(y\x” w) [w(xn’ Y)]) :
Show that the Hessian of L(w) is given as
A =2+ Z < y~p(y|x™,w) [(p(xny y)(p(xn’ y)T]

- IlEymp(y\x”,w) [w(xn’ Y)]Epr(yb(”,w) [w(xn’ Y)]T) .
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Solution. Let us denote the gradient vector by g(w) = VyL(w). Notice that we have
g(w), w,o(x",y") € R% The Hessian matrix is calculated, by definition, as

91 992 99a
6w1 6w1 6w1
991 Og2 99a
AwL(w)= | Owa Owy " Ows
991 Ogo 0ga
ow, Ow, 0wy

We denote each element in the Hessian matrix by h;;, where h;; = g 9i Recall that the
gradient is given as

N
o - exp(-(w. oy )
=2 ) ey -r ¥ =, o,y P )

n=1yney Zy ey exp

For h;; = ggz we get

89, . exp(—(w, p(x",y")))
_2)\[[ il = ;y;e:y @i(x", y") 8w] Zy’ey exp(—(w, p(x", y')))

i eXp( (W, p(x",y")))pj (X", y")
=2A[i = j] +Z > eilx Zy e (= (w, ooy )

n=1lyney
N (WL (" ¥™M)) Dy exp(— (L (™ y)) 9 ()
T;y;y - ) (Xyrey exp(—(w, p(xm,y"))))
=2\[i = j] + Z D eilxn y" e (X y p(y™ | X", w)
n=1lyney
N
Z(Z ")p(Y"X",W) (Z% X",y )p(y' | x" W))
ney y'ey
N
:2>‘[[i = ]]] + Z IlEymp(y\x”,w) [(pi(xn7 Y)‘pj (Xn7 Y)]
n=1

B Z EYNP (y|x™,w) ( )]Eywp(y\x” )[Spj (Xn7 y)] .

Putting all hi; together back into matrix representation yields the following Hessian
matrix:

AwL(w) = 2\I + Z( yeplylxrn [P ¥) o (", ¥) 1]

- IlEymp(y\x”,w) [@(Xn, Y)]Epr(yb(",w) [SD(X”, Y)]T) .
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Programming (6 points)

Exercise 3 (Gibbs sampling, 6 points). Let us consider the problem of binary image
segmentation and solve it by performing probabilistic inference via Gibbs sampling. In
this particular exercise, we are going to design a cow-detector for the test images in Fig-
ure 1, which should label a pixel as foreground if it belongs to a cow, and background
otherwise.

Figure 1: The test images for binary image segmentation to detect cows.

We define the following energy function for y € {0,1}Y such that 0 and 1 denote the
background and the foreground, respectively:

E(y) =) _Eily)+w Y Eij(yiv;)

IS% (4,9)€€

where w € RT is a parameter, and V stands for the set of pixels, and £ includes all pairs
of 4-neighboring pixels.

To define the unary energy functions E;, use the provided *.yml files. Each test
image has its own data file, specified by the same filename. In each data file, you can
read out a H x W array of float numbers. The H and W are the image height and
width, and each float value p; corresponds to the probability of that the given pixel
belongs to the foreground. We provide the cow_detector. cpp to demonstrate how to
load a data file and read out the corresponding probability values. The unary energy
functions FE; for all i € V are then defined as the negative log-likelihood:

Eilys) = {— log(1—ps) ify; =0
—log(p;) ify; =1.

The pairwise energy functions are defined as the contrast-sensitive Potts model for
all (i,7) € &,
Eij(yi, yj wi, 05) = exp(=Alai — 25]1%) - [y # 5] -
where z; denotes the intensities of the pixel i and A = 0.5.
Implement the Gibbs sampling algorithm to achieve probabilistic inference and calcu-

late the binary segmentation as well. Choose different values for w and give the range of
w that generates the best segmentation performance.



