Analysis of 3D Shapes (IN2238)

Frank R. Schmidt Matthias Vestner

Summer Semester 2017

Computer Vision	
Computer Vision 1. Introduction	3
Schedule	2
IN2238	
May	6
June	7
July	8
Exams	
Bonus	10
July Exams Bonus Team	11
Course Material	12
Course Page	13
Topics of the Lecture	14
Shape	15
What is a Shape?	16
What is a Shape?	17

	Shape Transformation	. 18
	Shape as Equivalence Class of Objects	. 19
	Restricted and Extended Shape Notions	. 20
ЭŁ	pject	21
	Banach-Tarski Paradox	. 22
	Open Sets	. 23
	Boundary	. 24
	What is an Object?	. 25
	Literature	. 26

Computer Vision

We are always looking for master students!

Please talk to the appointed contact person directly.

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 2 / 26

1. Introduction 3 / 26

Schedule 4 / 2

IN2238

The lecture Analysis of Three-Dimensional Shapes will be organized as following:

■ Tuesday Lecture: 10-11 and 11-12 in Room 02.09.023

■ Wednesday Tutorial: 14-16 in Room 02.09.023

■ Thursday Lecture: 14:00–14:45 and 15:00–15:45 in Room 02.09.023

The tutorial combines theoretical and programming assignments:

■ Assignment Distribution: Tuesday 11:00-11:15 in Room 02.09.023

■ Theoretical Assignment Due: Tuesday 23:59 per email

■ Assignment Presentation: Wednesday 14-16 in Room 02.09.023

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 5 / 26

May

May 2017							
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	
1	2 Lecture 1	3	4 Lecture 2	5	6	7	
8	9 Lecture 3	10 Matlab	11 Lecture 4	12	13	14	
15	16 Lecture 5	17 Tutorial 1	18 Lecture 6	19	20	21	
22	23 Lecture 7	24 Tutorial 2	25	26	27	28	
29	30 Lecture 8	31 Tutorial 3					

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 6 / 26

June

June 2017						
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
			1 Lecture 9	2	3	4
5	6	7 Tutorial 4	8 Lecture 10	9	10	11
12	13 Lecture 11	14 Tutorial 5	15	16	17	18
19	20 Lecture 12	21 Tutorial 6	22 Lecture 13	23	24	25
26	27 Lecture 14	28 Tutorial 7	29 Lecture 15	30		

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 7 / 26

July

July 2017							
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	
					1	2	
3	4 Lecture 16	5 Tutorial 8	6 Lecture 17	7	8	9	
10	11 Lecture 18	12 Tutorial 9	13 Lecture 19	14	15	16	
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 8 / 26

Exams

Requirements for being admitted to the exam:

- **Registration:** Students need to be registered prior to the exam:
 - May, 29^{th} June, 30^{th} via TUM online.
- **Exam:** In the week of August, $14^{th} 18^{th}$.

Participation at the tutorial:

■ Not mandatory, but highly recommended:

Theoretical assignments will help to understand the topics of the lecture. Programming assignments will help to apply the theory to practical problems.

- Bonus: Active students who solve 60% of the assignments earn a bonus.
- Exam: If one receives a mark between 1.3 and 4.0 in the exam, the mark will be improved by 0.3 resp. 0.4. Marks of 1.0 or 5.0 cannot be improved.

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 9 / 26

Bonus

To achieve the bonus, the following requirements have to be fulfilled:

Theory

- 60% of all theoretical assignments have to be solved. (PDF-Submissions (using LATEX) happen only online via email)
- At least one theoretical exercise has to be presented in front of the class.

Programming

■ 60% of all programming assignments have to be presented during the tutorial.

To promote team work, we advocate to form groups of **two** or **three** students in order to solve and submit the assignments.

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 10 / 26

Team

Lecturers

Dr. Frank R. Schmidt

Matthias Vestner

Zorah Lähner

Please do not hesitate to contact us in order to set up an appointment:

- f.schmidt@in.tum.de
- matthias.vestner@in.tum.de
- laehner@in.tum.de

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 11 / 26

Course Material 12 / 26

Course Page

On the internal site of the course page you have access to extra course material: https://vision.in.tum.de/teaching/ss2017/shape_2238

Password Sh4p3

- Slides for each lecture (Available prior to the lecture)
- Assignment Sheets (Available after the Tuesday lecture)
- Solution Sheets (Available after the Wednesday tutorial)

The course page will also be used for extra announcements.

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 13 / 26

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 14 / 26

Shape 15 / 26

What is a Shape?

Cave Painting

Paper Cutting

- A **shape** describes the geometry of an object without relying on a specific location or orientation of this object, *i.e.*, An egg remains an egg, no matter where we put it on a table.
- A shape should reflect the human perception of objects: The whole is more than the sum of its parts.

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction - 16 / 26

What is a Shape?

Source: Galileo, 1638

Definition 1 (Kendall, 1977). **Shape** is all the *geometrical information* that remains when *location, scale and rotational effects* are filtered out.

Two 3D-objects $O_1, O_2 \subset \mathbb{R}^3$ are of the same shape if we find a rotation $R \in SO(3)$, a translation $T \in \mathbb{R}^3$ and a scaling factor $\sigma \in \mathbb{R}_+$ such that O_1 becomes O_2 after scaling, rotation and translation.

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 17 / 26

Shape Transformation

We can transform a 3D-object O_1 by applying a function $\Phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ to this object, *i.e.*,

$$\Phi(O_1) := \{ \Phi(x) | x \in O_1 \}$$

We write

$$O_1 + T := \Phi(O_1)$$
 $\Phi(x) = x + T$ (Translation)
 $\sigma \cdot O_1 := \Phi(O_1)$ $\Phi(x) = \sigma \cdot x$ (Scaling)
 $R \cdot O_1 := \Phi(O_1)$ $\Phi(x) = R \cdot x$ (Rotation)

This means that O_2 is of the same shape as O_1 if the following is satisfied

$$O_2 = \sigma \cdot (R \cdot O_1 + T)$$

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 18 / 26

Shape as Equivalence Class of Objects

Note that the above mentioned relation between objects defines an equivalence relation:

$$O_1 \sim O_2$$
 : \Leftrightarrow $\left[\exists (R, T, \sigma) \in SO(3) \times \mathbb{R}^3 \times \mathbb{R}_+ : O_2 = \sigma \cdot (R \cdot O_1 + T) \right]$

One can easily show that the following holds:

$$O_1 \sim O_1$$
 (Reflexivity) $O_1 \sim O_2$ \Leftrightarrow $O_2 \sim O_1$ (Symmetry) $O_1 \sim O_2, O_2 \sim O_3$ \Rightarrow $O_1 \sim O_3$ (Transitivity)

Every equivalence relation defines an equivalence class of equivalent objects. The equivalence class $[O] := \{O' \subset \mathbb{R}^3 | O \sim O'\}$ of an object $O \subset \mathbb{R}^3$ is the shape of this object.

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction - 19 / 26

Restricted and Extended Shape Notions

In some applications, we like to differentiate between objects of different sizes. Analogously, we can define the **Shape-and-Scale equivalence relation**:

$$O_1 \sim O_2$$
 : \Leftrightarrow $\left[\exists (R,T) \in SO(3) \times \mathbb{R}^3 : O_2 = R \cdot O_1 + T\right]$

The equivalence class $[O] := \{O' \subset \mathbb{R}^3 | O \sim O'\}$ of an object $O \subset \mathbb{R}^3$ is the shape-and-scale of this object.

Some authors call also the shape-and-scale of an object their shape.

In some applications, we also like to extend the shape equivalence relation in order to be invariant with respect to different "poses", i.e.: A horse is a horse, no matter whether it is standing or galopping.

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 20 / 26

Object 21 / 26

Banach-Tarski Paradox

Source: Wikimedia.org

Theorem 1 (Banach and Tarski, 1924). The 3D ball $B = \{x \in \mathbb{R}^3 | \langle x, x \rangle \leq 1\}$ can be partitioned into finite many sets A_i , i.e., $B = \bigsqcup_{i=1}^k A_i$, which can be rotated to form two copies of B.

The proof of this paradox uses a heavy machinery based on set theory. In particular the so called $Axiom\ of\ Choice$ is used to create the sets A_i .

Interestingly, we cannot measure the volume of any of the sets A_i . To avoid any similar problem, we are only interested in objects $O \subset \mathbb{R}^n$ that are open.

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction - 22 / 26

Open Sets

Definition 2 (Open Set). A set $O \subset \mathbb{R}^n$ is called **open** iff

$$x \in O$$

 \Rightarrow

$$\exists \varepsilon > 0 : B_{\varepsilon}(x) \subset O,$$

where $B_{\varepsilon}(x) := \{y \in \mathbb{R}^n | \|x - y\| < \varepsilon\}$ is a ball of radius ε centered at $x \in \mathbb{R}^n$.

Definition 3 (Relatively Open Set). Given $X \subset \mathbb{R}^n$, we call $O \subset X$ relatively open with respect to X iff there exists an open set $\hat{O} \subset \mathbb{R}^n$ such that

$$O = \hat{O} \cap X$$

The set of all open sets is called its topology $\mathcal{T}(X)$.

Definition 4 (Neighborhood). Given a subset $X \subset \mathbb{R}^n$ and $x \in X$, we call $O(x) \in \mathcal{T}(X)$ an **open neighborhood** of x if $x \in O$.

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 23 / 26

Boundary

Definition 5 (Boundary). Given a set $X \subset \mathbb{R}^n$, we call

$$\partial X := \{ x \in \mathbb{R}^n | \forall O(x) \in \mathcal{T}(\mathbb{R}^n) : O \cap X \neq \emptyset \land O \backslash X \neq \emptyset \}$$

its **boundary**.

- The boundary of \mathbb{R}^n is $\partial \mathbb{R}^n = \emptyset$.
- The boundary of the closed interval [0,1] is $\partial[0,1] = \{0,1\}$.
- The boundary of [0,1[is $\partial[0,1[=\{0,1\}.$
- The boundary of]0,1[is $\partial]0,1[=\{0,1\}.$
- The boundary of the ball $B^n = \{x \in \mathbb{R}^n | \langle x, x \rangle \leq 1\}$ is $\partial B = \mathbb{S}^{n-1} = \{x \in \mathbb{R}^n | \langle x, x \rangle = 1\}$.

What is an Object?

Source: Wikimedia.org

To define what a shape is, we first need to define an object.

Definition 6 (Informal Definition). An object of dimension d is an open subset $X \subset \mathbb{R}^d$ such that $\dim \partial X = d - 1$.

Note that we exclude sets whose boundaries are fractals. Instead, we want to have a boundary with the well-defined dimension d-1.

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 25 / 26

Literature

Shapes

- Galileo, Discorsi e dimostrazioni matematiche, informo a due nuove scienze attenti alla mecanica i movimenti locali, 1638, appresso gli Elsivirii; Opere VIII. (2)
- Kendall, *The diffusion of shape*, 1977, Advances in Applied Probabilities (9), 428–430.
- Dryden and Mardia, Statistical Shape Analysis, 1998, Wiley, 376 pages.

Set Theoretical Results

- Banach and Tarski, Sur la décomposition des ensembles de points en parties respectivement congruentes, 1924, Fundamenta Mathematica (6), 244–277.
- Carathéodory, Vorlesungen über reelle Funktionen, 1918, B. G. Teubner, 704 pages.

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction – 26 / 26