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We defined an object of dimension d as an open subset X — R? such that
dim 0X = d — 1. This concept of a dimension is in fact an extension of the
dimension for linear vector spaces.

As a matter of fact, we like this boundary to be smooth.

Therefore, we will recap some of the main concepts from
Linear Algebra as well as Analysis.
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Vector Sub-Spaces
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Given an R-vector space V/, the subset U < V is also a vector space (called
subspace) if the following holds:
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Given a subset X = {z1,...,2,} < V, the subset span(X) is a subspace with

span(X) := { 2 ANiwi| A € R”} .
i=1

If the x; are linear independent, we call X a base of spa
and n is called its dimension.
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Shapes;and Objects

Linear Spaces Linear Mapping Differential Two Theorems

The concept of a shape can be understood as a generalization of objects. In fact,
we defined the shape of an object as a class of equivalent objects.

As a 3D-object we understand something like a ball or a human that occupies a
certain region X < R of the real world.
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Vector Spaces
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An R-vector space V is formally defined as an Abelian group that has some
additional linear properties.

As an Abelian group, V' possesses a binary operation +, a neutral element 0 € V' as
well as an inverse element (—v) € V for each element v € V.

In addition, there exists a scalar multiplication - such that

(A1) -0 =X (u-v)
1.v=v
A+p)-v=Xv+p-v
A(u+v)=X-u+X-v

Y\ peRveV
YveV

Y\ pneRveV
VAe Ru,veV

Examples for vector spaces are R”, but also function spaces like C¥(R™).
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Linear Mapping




Linear Mapping
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Matrix=Multiplication
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Given the R-vector spaces U and V/, a mapping L: U — V is a linear mapping if
the following holds:
L(u +v) =L(u) + L(v)
L(Au) =AL(u)

Yu,ve U
YAeR,uelU

Is X a basis of the n-dimensional vector space U and Y a basis of the
m-dimensional vector space V, we obtain

L(zj) = Y aijyi
i=1

A e R™*™ s then called the representing matrix of L with respect to the bases
X and Y and we write:

ME(L) =A.
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If we have V' = R™ and a matrix A € R"*", the matrix-vector multiplication defines
a linear mapping:
L: R" »R"
x Az

Let us assume that we want to change the bases of R™. To that end, both X and
Y can be written in matrix form and we have

ME(L) =YL A- X

Thus, there is a subtle difference between linear mappings L and matrices A.
A is a representation of L that also takes the specific bases into account.

We say that two matrices A and B are similar, if there exists an invertible matrix
X such that B=X"1.-4-X.
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History.of ‘Differential
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While the concept of the derivative or differential is nowadays one of the basic
concepts in modern mathematics, it took a while to find a clean mathematical
definition.

The notation % is due to Leibniz who called dx and dy an “infinitely small change
of" x resp. y.

In 1924, Courant mentioned that the idea of the differential as infinite small
expression “lacks any meaning” and is therefore “useless”.

The modern notion of derivatives and differential is due to Cauchy and
Weierstral, which we want to revise in the following.
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with
T
cij = Z Qikbyj
l=1

It turns out that

MY (Lg) - M (Ly) = M3 (L o Ly)
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0 xo+h

The derivative f’(xg) of a function f: R — R at the position 29 € R is

F/(20) := lim M

While this is a working mathematical definition, it is a bit difficult to extend it to
arbitrary functions f: R™ — R™, since we cannot "“divide by vectors”.
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JacobiMatrix
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A Toxg + h

Given a function f: R — R and a position z¢ € R, its differential D f(zo) is the
unique linear mapping L: R — R such that

f(zo +h) =f(x0) + L[] +r(h)
.r(h)
a0

Let f: R™ — R™ be a differentiable function and zy € R™. The differential
Df(x0): R™ — R"
is a linear mapping.

Using the canonical bases {ej, ..., e} for R™ and {ei,..., ey} for R", D f(xq)
can be written in matrix form, the Jacobi matrix

Jigoo Iim
Df(zo)[h] = J - h J=1: :
Jnl Jnm

with

fi(xo + h-ej) = fi(wo)
h

Jij = <ei,J - e5) = {ei, Df (wo)[e;]) = lim = &' (w0)
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_Chain Rule
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Chain_Rule (Example)

Tninn
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Let f: R™ — R" and g: R¥ — R™ be differentiable functions. Then we have

(fog)(ao+h) =f (9(xo) + Dg(wo)[h] + rq(h))
=(f o g)(wo) + Df(g(x0)) [Dg(wo)[h] + rq(h)] +
7y (Dg(wo)[h] + rg(h))
=(f 0 g)(w0) + Df(g(wo)) [Dg(xo)[2]] + r(h)

Thus we have

D(f o g)(z0) = Df(g(z0)) Dg(x0)
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Two Theorems

Akt Inverse Functions:as Implicit Functionsm
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Usually, one defines the square root function in an implicit manner:

z—\/EZZO

This can be formally done in the following way:

Theorem 2 (Square Root). Let ®: R x R — R be the function

which satisfies ®(x0, yo) = 0 for (zo,y0) = (4,2).
Then there exist neighborhoods U(4), V(2) and unique f: U — V such that

W [ is continuously differentiable and f(4) = 2.

B Oz, f(z))=0forallzel.
22®(a,
m () = ~E5EH = 7w
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Note that we can also use the implicit function theorem if we are not looking for
the inverse of a function.

The points p = (p1, p2, p3) on the unit sphere satisfy

pi+ 3+ s =1
If we use the notation z = (p1, p2) and y = p3, the requirements for the implicit
function theorem are satisfied for zg = (0,0), yo = 1 as well as

o(z,y) = |o* +y* -1
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Let g1,92: R™ — R™ and f: R" x R" — R" with f(z,y) := = + y, we have
D(g1 + g2)(z0) =D(f © g)(z0) = Df(g(z0)) - Dg(z0)
=(ld 1d)- (Dgl(m‘))) = Dgi(o) + Dga(wo)
Dgs(@o)
Let g1,92: R™ - R and f: R x R — R with f(z,y) := z - y, we have
D(g1 - 92)(w0) =D(f o g)(z0) = Df(g(x0)) - Dg(x0)
= (g2(z0) g1(0)) - (gﬁiﬁ;)

=Dgi (o) - g2(x0) + Dga(x0) - 91(w0)
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If f, f~1: R® — R" are both continuously differentiable, we have

W=D [fo [ ()] =Df(f"@))-D[F 7] (x)
D[f ")) =Df(f ()"

Interestingly, also the opposite is (locally) true

Theorem 1. Let f: R™ — R" cont. differentiable and D f(x) invertible.
Then there exist neighborhoods U(xo) and V (yo) with yo = f(xo) such that
m f: U — V is a bijection.

B | is continuously differentiable.

m [~ is continuously differentiable.
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I

Theorem 3 (Implicit Function Theorem). Let ®: R™ x R™ — R™ be a cont.
differentiable mapping which satisfies ®(xzo,yo) = 0 for a (zg,y0) € R™™" and
0y ®(wo,y0) is invertible.

Then there exist neighborhoods U (z(), V (yo) and a continuously differentiable
function f: U — V such that

O(z, f(2)) =0
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This can be generalized to the

VeelU
and

f(@o) =yo

F(@) == (8,0(x, f(x)) " &2z, f(2)) VzelU
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AL Implicit Function: Theorem (Example) m
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In particular, there exists a neighborhood U(zg) = R? and a mapping f: U — R
such that
0: U -R?
x> (z, f(2))
maps the 2D region U onto a part of the sphere.

Functions like ¢ can be used to map a subset of a two-dimensionale linear space
onto a subset of a two-dimensional curved space. These curved spaces are called
manifolds.
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