Analysis of 3D Shapes (IN2238)

Frank R. Schmidt
Matthias Vestner

Summer Semester 2017
Linear Spaces Linear Mapping Differential Two Theorems

Thit Linear Algebra and Analysis
Linear Spaces Linear Mapping Differential Two Theorems

We defined an object of dimension d as an open subset $X \subset \mathbb{R}^{d}$ such that $\operatorname{dim} \partial X=d-1$. This concept of a dimension is in fact an extension of the dimension for linear vector spaces

As a matter of fact, we like this boundary to be smooth.
Therefore, we will recap some of the main concepts from
Linear Algebra as well as Analysis.

Vector Sub-Spaces

Linear Spaces
Differential

Given an \mathbb{R}-vector space V, the subset $U \subset V$ is also a vector space (called subspace) if the following holds:

$$
\begin{aligned}
u+v \in U & \forall u, v \in U \\
\lambda v \in U & \forall \lambda \in \mathbb{R}, v \in U
\end{aligned}
$$

Given a subset $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset V$, the subset $\operatorname{span}(X)$ is a subspace with

$$
\operatorname{span}(X):=\left\{\sum_{i=1}^{n} \lambda_{i} x_{i} \mid \lambda \in \mathbb{R}^{n}\right\} .
$$

If the x_{i} are linear independent, we call X a base of $\operatorname{span}(X)$ and n is called its dimension.

Linear Mapping

Examples for vector spaces are \mathbb{R}^{n}, but also function spaces like $C^{k}\left(\mathbb{R}^{n}\right)$.

IN2238 - Analysis of Three-Dimensional Shapes
2. Linear Algebra and Analyis (Recap 1) $-6 / 24$

Given the \mathbb{R}-vector spaces U and V, a mapping $L: U \rightarrow V$ is a linear mapping if the following holds:

$$
\begin{aligned}
L(u+v) & =L(u)+L(v) & & \forall u, v \in U \\
L(\lambda u) & =\lambda L(u) & & \forall \lambda \in \mathbb{R}, u \in U
\end{aligned}
$$

Is X a basis of the n-dimensional vector space U and Y a basis of the m-dimensional vector space V, we obtain

$$
L\left(x_{j}\right)=\sum_{i=1}^{m} a_{i j} y_{i}
$$

$A \in \mathbb{R}^{m \times n}$ is then called the representing matrix of L with respect to the bases X and Y and we write:

$$
\mathcal{M}_{Y}^{X}(L)=A
$$

IN2238 - Analysis of Three-Dimensional Shapes

If we have $V=\mathbb{R}^{n}$ and a matrix $A \in \mathbb{R}^{n \times n}$, the matrix-vector multiplication defines a linear mapping:

$$
\begin{aligned}
L: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{n} \\
x & \mapsto A x
\end{aligned}
$$

Let us assume that we want to change the bases of \mathbb{R}^{n}. To that end, both X and Y can be written in matrix form and we have

$$
\mathcal{M}_{Y}^{X}(L)=Y \cdot A \cdot X^{-1}
$$

Thus, there is a subtle difference between linear mappings L and matrices A. A is a representation of L that also takes the specific bases into account.

We say that two matrices A and B are similar, if there exists an invertible matrix X such that $B=X \cdot A \cdot X^{-1}$.

IN2238 - Analysis of Three-Dimensional Shapes
 2. Linear Algebra and Analyis (Recap 1) - 11 / 24

While the concept of the derivative or differential is nowadays one of the basic concepts in modern mathematics, it took a while to find a clean mathematical definition.

The notation $\frac{\mathrm{dy}}{\mathrm{dx}}$ is due to Leibniz who called dx and dy an "infinitely small change of" x resp. y.

In 1924, Courant mentioned that the idea of the differential as infinite small expression "lacks any meaning" and is therefore "useless".

The modern notion of derivatives and differential is due to Cauchy and Weierstraß, which we want to revise in the following.
Given matrices $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$, the product $C:=A \cdot B \in \mathbb{R}^{m \times n}$ is

$$
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 r} \\
\vdots & & \vdots \\
\mathrm{a}_{\mathrm{i} 1} & \cdots & \mathrm{a}_{\mathrm{ir}} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m r}
\end{array}\right) \cdot\left(\begin{array}{ccccc}
b_{11} & \cdots & \mathrm{~b}_{1 \mathrm{j}} & \cdots & b_{1 n} \\
\vdots & & \vdots & & \vdots \\
b_{r 1} & \cdots & \mathrm{~b}_{\mathrm{rj}} & \cdots & b_{r n}
\end{array}\right)=\left(\begin{array}{ccc}
c_{11} & \cdots & c_{1 n} \\
\vdots & \mathrm{c}_{\mathrm{ij}} & \vdots \\
c_{m 1} & \cdots & c_{m n}
\end{array}\right)
$$

with

$$
c_{i j}=\sum_{k=1}^{r} a_{i k} b_{k j}
$$

It turns out that

$$
\mathcal{M}_{Z}^{Y}\left(L_{2}\right) \cdot \mathcal{M}_{Y}^{X}\left(L_{1}\right)=\mathcal{M}_{Z}^{X}\left(L_{2} \circ L_{1}\right)
$$

IN2238 - Analysis of Three-Dimensional Shapes
2. Linear Algebra and Analyis (Recap 1) - 10 / 24

Differential

The derivative $f^{\prime}\left(x_{0}\right)$ of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at the position $x_{0} \in \mathbb{R}$ is

$$
f^{\prime}\left(x_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

While this is a working mathematical definition, it is a bit difficult to extend it to arbitrary functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, since we cannot "divide by vectors".

IN2238 - Analysis of Three-Dimensional Shapes
2. Linear Algebra and Analyis (Recap 1) - 14 / 24

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a differentiable function and $x_{0} \in \mathbb{R}^{m}$. The differential

$$
D f\left(x_{0}\right): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

is a linear mapping.
Using the canonical bases $\left\{e_{1}, \ldots, e_{m}\right\}$ for \mathbb{R}^{m} and $\left\{e_{1}, \ldots, e_{n}\right\}$ for $\mathbb{R}^{n}, \operatorname{Df}\left(x_{0}\right)$ can be written in matrix form, the Jacobi matrix

$$
D f\left(x_{0}\right)[h]=J \cdot h \quad J=\left(\begin{array}{ccc}
J_{1,1} & \cdots & J_{1, m} \\
\vdots & & \vdots \\
J_{n, 1} & \cdots & J_{n, m}
\end{array}\right)
$$

with

$$
J_{i, j}=\left\langle e_{i}, J \cdot e_{j}\right\rangle=\left\langle e_{i}, D f\left(x_{0}\right)\left[e_{j}\right]\right\rangle=\lim _{h \rightarrow 0} \frac{f^{i}\left(x_{0}+h \cdot e_{j}\right)-f^{i}\left(x_{0}\right)}{h}=\partial_{j} f^{i}\left(x_{0}\right)
$$

$$
\begin{aligned}
& \text { Chain Rule } \\
& \left.\qquad \begin{array}{rl}
\text { Let } f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \text { and } g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m} \text { be differentiable functions. Then we have } \\
\qquad \begin{array}{rl}
(f \circ g)\left(x_{0}+h\right)= & f\left(g\left(x_{0}\right)+D g\left(x_{0}\right)[h]+r_{g}(h)\right) \\
= & (f \circ g)\left(x_{0}\right)+D f\left(g\left(x_{0}\right)\right)\left[D g\left(x_{0}\right)[h]+r_{g}(h)\right]+ \\
& r_{f}\left(D g\left(x_{0}\right)[h]+r_{g}(h)\right) \\
= & (f \circ g)\left(x_{0}\right)+D f\left(g\left(x_{0}\right)\right)\left[D g\left(x_{0}\right)[h]\right]+r(h)
\end{array}
\end{array} . \begin{array}{l}
\text { Linear Mapping Theorems }
\end{array}\right]
\end{aligned}
$$

Thus we have

$$
D(\mathbf{f} \circ \mathbf{g})\left(x_{0}\right)=\operatorname{Df}\left(g\left(x_{0}\right)\right) \cdot \operatorname{Dg}\left(x_{0}\right)
$$

IN2238 - Analysis of Three-Dimensional Shapes

2. Linear Algebra and Analyis (Recap 1) - 17 / 24

Two Theorems

Let $g_{1}, g_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $f(x, y):=x+y$, we have

$$
\begin{aligned}
D\left(g_{1}+g_{2}\right)\left(x_{0}\right) & =D(f \circ g)\left(x_{0}\right)=D f\left(g\left(x_{0}\right)\right) \cdot D g\left(x_{0}\right) \\
& =\left(\begin{array}{ll}
\text { Id } & \text { Id }
\end{array}\right) \cdot\binom{D g_{1}\left(x_{0}\right)}{D g_{2}\left(x_{0}\right)}=D g_{1}\left(x_{0}\right)+D g_{2}\left(x_{0}\right)
\end{aligned}
$$

Let $g_{1}, g_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ and $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ with $f(x, y):=x \cdot y$, we have

$$
\begin{aligned}
& D\left(g_{1} \cdot g_{2}\right)\left(x_{0}\right)=D(f \circ g)\left(x_{0}\right)=D f\left(g\left(x_{0}\right)\right) \cdot D g\left(x_{0}\right) \\
&=\left(g_{2}\left(x_{0}\right)\right. \\
&\left.g_{1}\left(x_{0}\right)\right) \cdot\binom{D g_{1}\left(x_{0}\right)}{D g_{2}\left(x_{0}\right)} \\
&=D g_{1}\left(x_{0}\right) \cdot g_{2}\left(x_{0}\right)+D g_{2}\left(x_{0}\right) \cdot g_{1}\left(x_{0}\right)
\end{aligned}
$$

IN2238 - Analysis of Three-Dimensional Shapes
2. Linear Algebra and Analyis (Recap 1) - 18 / 24

If $f, f^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are both continuously differentiable, we have

$$
\begin{aligned}
\operatorname{Id} & =D\left[f \circ f^{-1}(x)\right]=D f\left(f^{-1}(x)\right) \cdot D\left[f^{-1}\right](x) \\
D\left[f^{-1}\right](x) & =D f\left(f^{-1}(x)\right)^{-1}
\end{aligned}
$$

Interestingly, also the opposite is (locally) true
Theorem 1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ cont. differentiable and $D f\left(x_{0}\right)$ invertible.
Then there exist neighborhoods $U\left(x_{0}\right)$ and $V\left(y_{0}\right)$ with $y_{0}=f\left(x_{0}\right)$ such that

- $f: U \rightarrow V$ is a bijection.
- f is continuously differentiable.
- f^{-1} is continuously differentiable.

IN2238 - Analysis of Three-Dimensional Shapes

This can be generalized to the
Theorem 3 (Implicit Function Theorem). Let $\Phi: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a cont. differentiable mapping which satisfies $\Phi\left(x_{0}, y_{0}\right)=0$ for a $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{m+n}$ and $\partial_{y} \Phi\left(x_{0}, y_{0}\right)$ is invertible.
Then there exist neighborhoods $U\left(x_{0}\right), V\left(y_{0}\right)$ and a continuously differentiable function $f: U \rightarrow V$ such that

$$
\Phi(x, f(x))=0 \quad \forall x \in U
$$

and
$f\left(x_{0}\right)=y_{0}$
$f^{\prime}(x)=-\left(\partial_{y} \Phi(x, f(x))\right)^{-1} \partial_{x} \Phi(x, f(x)) \quad \forall x \in U$

IN2238-Analysis of Three- Dimensional Shapes
2. Linear Algebra and Analyis (Recap 1) - 22 / 24

In particular, there exists a neighborhood $U\left(x_{0}\right) \subset \mathbb{R}^{2}$ and a mapping $f: U \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
\varphi: U & \rightarrow \mathbb{R}^{3} \\
x & \mapsto(x, f(x))
\end{aligned}
$$

maps the 2D region U onto a part of the sphere.
Functions like φ can be used to map a subset of a two-dimensionale linear space onto a subset of a two-dimensional curved space. These curved spaces are called manifolds.

