

Analysis of 3D Shapes (IN2238)

Frank R. Schmidt Matthias Vestner

Summer Semester 2017

2. LA and Analysis (Recap 1)

Linear Spaces

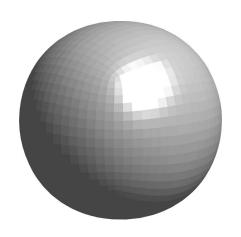
Shapes and Objects

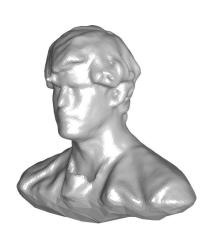
Linear Spaces

Linear Mapping

Differential

Two Theorems





The concept of a shape can be understood as a generalization of objects. In fact, we defined the **shape of an object** as a class of equivalent objects.

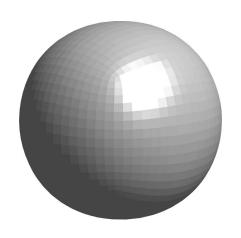
Shapes and Objects

Linear Spaces

Linear Mapping

Differential

Two Theorems





The concept of a shape can be understood as a generalization of objects. In fact, we defined the **shape of an object** as a class of equivalent objects.

As a 3D-object we understand something like a ball or a human that occupies a certain region $X \subset \mathbb{R}^3$ of the real world.

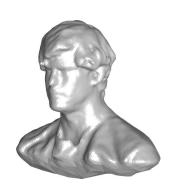
Linear Algebra and Analysis

Linear Spaces

Linear Mapping

Differential

Two Theorems



We defined an object of dimension d as an open subset $X \subset \mathbb{R}^d$ such that $\dim \partial X = d-1$. This concept of a dimension is in fact an extension of the dimension for linear vector spaces.

Linear Algebra and Analysis

Linear Spaces

Linear Mapping

Differential

Two Theorems

We defined an object of dimension d as an open subset $X \subset \mathbb{R}^d$ such that $\dim \partial X = d - 1$. This concept of a dimension is in fact an extension of the dimension for linear vector spaces.

As a matter of fact, we like this boundary to be smooth.

Linear Algebra and Analysis

Linear Spaces

Linear Mapping

Differential

Two Theorems

We defined an object of dimension d as an open subset $X \subset \mathbb{R}^d$ such that $\dim \partial X = d - 1$. This concept of a dimension is in fact an extension of the dimension for linear vector spaces.

As a matter of fact, we like this boundary to be smooth.

Therefore, we will recap some of the main concepts from Linear Algebra as well as Analysis.

Linear Spaces

Linear Mapping

Differential

Two Theorems

An \mathbb{R} -vector space V is formally defined as an **Abelian group** that has some additional **linear** properties.

Linear Spaces

Linear Mapping

Differential

Two Theorems

An \mathbb{R} -vector space V is formally defined as an Abelian group that has some additional linear properties.

As an Abelian group, V possesses a binary operation +, a neutral element $0 \in V$ as well as an inverse element $(-v) \in V$ for each element $v \in V$.

Linear Spaces

Linear Mapping

Differential

Two Theorems

An \mathbb{R} -vector space V is formally defined as an **Abelian group** that has some additional **linear** properties.

As an Abelian group, V possesses a binary operation +, a neutral element $0 \in V$ as well as an inverse element $(-v) \in V$ for each element $v \in V$.

In addition, there exists a scalar multiplication · such that

$$(\lambda \cdot \mu) \cdot v = \lambda \cdot (\mu \cdot v) \qquad \forall \lambda, \mu \in \mathbb{R}, v \in V$$

$$1 \cdot v = v \qquad \forall v \in V$$

$$(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v \qquad \forall \lambda, \mu \in \mathbb{R}, v \in V$$

$$\lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v \qquad \forall \lambda \in \mathbb{R}, u, v \in V$$

Linear Spaces

Linear Mapping

Differential

Two Theorems

An \mathbb{R} -vector space V is formally defined as an Abelian group that has some additional linear properties.

As an Abelian group, V possesses a binary operation +, a neutral element $0 \in V$ as well as an inverse element $(-v) \in V$ for each element $v \in V$.

In addition, there exists a scalar multiplication · such that

$$(\lambda \cdot \mu) \cdot v = \lambda \cdot (\mu \cdot v) \qquad \forall \lambda, \mu \in \mathbb{R}, v \in V$$

$$1 \cdot v = v \qquad \forall v \in V$$

$$(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v \qquad \forall \lambda, \mu \in \mathbb{R}, v \in V$$

$$\lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v \qquad \forall \lambda \in \mathbb{R}, u, v \in V$$

Examples for vector spaces are \mathbb{R}^n , but also function spaces like $C^k(\mathbb{R}^n)$.

Vector Sub-Spaces

Linear Spaces

Linear Mapping

Differential

Two Theorems

Given an \mathbb{R} -vector space V, the subset $U \subset V$ is also a vector space (called subspace) if the following holds:

$$u + v \in U$$

$$\lambda v \in U$$

$$\forall u, v \in U$$

$$\forall \lambda \in \mathbb{R}, v \in U$$

Vector Sub-Spaces

Linear Spaces

Linear Mapping

Differential

Two Theorems

Given an \mathbb{R} -vector space V, the subset $U \subset V$ is also a vector space (called subspace) if the following holds:

$$u + v \in U \qquad \forall u, v \in U$$
$$\lambda v \in U \qquad \forall \lambda \in \mathbb{R}, v \in U$$

Given a subset $X = \{x_1, \dots, x_n\} \subset V$, the subset $\operatorname{span}(X)$ is a subspace with

$$\operatorname{span}(X) := \left\{ \sum_{i=1}^{n} \lambda_i x_i \middle| \lambda \in \mathbb{R}^n \right\}.$$

Vector Sub-Spaces

Linear Spaces

Linear Mapping

Differential

Two Theorems

Given an \mathbb{R} -vector space V, the subset $U \subset V$ is also a vector space (called subspace) if the following holds:

$$u + v \in U \qquad \forall u, v \in U$$
$$\lambda v \in U \qquad \forall \lambda \in \mathbb{R}, v \in U$$

Given a subset $X = \{x_1, \dots, x_n\} \subset V$, the subset $\operatorname{span}(X)$ is a subspace with

$$\operatorname{span}(X) := \left\{ \sum_{i=1}^{n} \lambda_i x_i \middle| \lambda \in \mathbb{R}^n \right\}.$$

If the x_i are linear independent, we call X a base of $\operatorname{span}(X)$ and n is called its dimension.

Linear Spaces

Linear Mapping

Differential

Two Theorems

Given the \mathbb{R} -vector spaces U and V, a mapping $L\colon U\to V$ is a linear mapping if the following holds:

$$L(u+v) = L(u) + L(v)$$
$$L(\lambda u) = \lambda L(u)$$

$$\forall u, v \in U$$

$$\forall \lambda \in \mathbb{R}, u \in U$$

Linear Spaces

Linear Mapping

Differential

Two Theorems

Given the \mathbb{R} -vector spaces U and V, a mapping $L\colon U\to V$ is a linear mapping if the following holds:

$$L(u+v) = L(u) + L(v) \qquad \forall u, v \in U$$

$$L(\lambda u) = \lambda L(u) \qquad \forall \lambda \in \mathbb{R}, u \in U$$

Is X a basis of the n-dimensional vector space U and Y a basis of the m-dimensional vector space V, we obtain

$$L(x_j) = \sum_{i=1}^{m} a_{ij} y_i$$

Linear Spaces

Linear Mapping

Differential

Two Theorems

Given the \mathbb{R} -vector spaces U and V, a mapping $L\colon U\to V$ is a linear mapping if the following holds:

$$L(u+v) = L(u) + L(v) \qquad \forall u, v \in U$$

$$L(\lambda u) = \lambda L(u) \qquad \forall \lambda \in \mathbb{R}, u \in U$$

Is X a basis of the n-dimensional vector space U and Y a basis of the m-dimensional vector space V, we obtain

$$L(x_j) = \sum_{i=1}^{m} a_{ij} y_i$$

 $A \in \mathbb{R}^{m \times n}$ is then called the **representing matrix** of L with respect to the bases X and Y and we write:

$$\mathcal{M}_Y^X(L) = A.$$

Matrix-Multiplication

Linear Spaces Linear Mapping Differential

Two Theorems

Given matrices $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$, the product $C := A \cdot B \in \mathbb{R}^{m \times n}$ is

$$\begin{pmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & & \vdots \\ \mathbf{a_{i1}} & \cdots & \mathbf{a_{ir}} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mr} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \cdots & \mathbf{b_{1j}} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{r1} & \cdots & \mathbf{b_{rj}} & \cdots & b_{rn} \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \mathbf{c_{ij}} & \vdots \\ c_{m1} & \cdots & c_{mn} \end{pmatrix}$$

Matrix-Multiplication

Linear Spaces

Linear Mapping Differential

Two Theorems

Given matrices $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$, the product $C := A \cdot B \in \mathbb{R}^{m \times n}$ is

$$\begin{pmatrix}
a_{11} & \cdots & a_{1r} \\
\vdots & & \vdots \\
\mathbf{a_{i1}} & \cdots & \mathbf{a_{ir}} \\
\vdots & & \vdots \\
a_{m1} & \cdots & a_{mr}
\end{pmatrix} \cdot \begin{pmatrix}
b_{11} & \cdots & \mathbf{b_{1j}} & \cdots & b_{1n} \\
\vdots & & \vdots & & \vdots \\
b_{r1} & \cdots & \mathbf{b_{rj}} & \cdots & b_{rn}
\end{pmatrix} = \begin{pmatrix}
c_{11} & \cdots & c_{1n} \\
\vdots & \mathbf{c_{ij}} & \vdots \\
c_{m1} & \cdots & c_{mn}
\end{pmatrix}$$

with

$$c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj}$$

Matrix-Multiplication

Linear Spaces

Linear Mapping Differential

Two Theorems

Given matrices $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$, the product $C := A \cdot B \in \mathbb{R}^{m \times n}$ is

$$\begin{pmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & & \vdots \\ \mathbf{a_{i1}} & \cdots & \mathbf{a_{ir}} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mr} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \cdots & \mathbf{b_{1j}} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{r1} & \cdots & \mathbf{b_{rj}} & \cdots & b_{rn} \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \mathbf{c_{ij}} & \vdots \\ c_{m1} & \cdots & c_{mn} \end{pmatrix}$$

with

$$c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj}$$

It turns out that

$$\mathcal{M}_Z^Y(L_2) \cdot \mathcal{M}_Y^X(L_1) = \mathcal{M}_Z^X(L_2 \circ L_1)$$

Linear Spaces

Linear Mapping

Differential

Two Theorems

If we have $V = \mathbb{R}^n$ and a matrix $A \in \mathbb{R}^{n \times n}$, the matrix-vector multiplication defines a linear mapping:

$$L \colon \mathbb{R}^n \to \mathbb{R}^n$$

$$x \mapsto Ax$$

Linear Spaces

Linear Mapping

Differential

Two Theorems

If we have $V = \mathbb{R}^n$ and a matrix $A \in \mathbb{R}^{n \times n}$, the matrix-vector multiplication defines a linear mapping:

$$L \colon \mathbb{R}^n \to \mathbb{R}^n$$
$$x \mapsto Ax$$

Let us assume that we want to change the bases of \mathbb{R}^n . To that end, both X and Y can be written in matrix form and we have

$$\mathcal{M}_Y^X(L) = Y \cdot A \cdot X^{-1}$$

Linear Spaces

Linear Mapping

Differential

Two Theorems

If we have $V = \mathbb{R}^n$ and a matrix $A \in \mathbb{R}^{n \times n}$, the matrix-vector multiplication defines a linear mapping:

$$L \colon \mathbb{R}^n \to \mathbb{R}^n$$
$$x \mapsto Ax$$

Let us assume that we want to change the bases of \mathbb{R}^n . To that end, both X and Y can be written in matrix form and we have

$$\mathcal{M}_Y^X(L) = Y \cdot A \cdot X^{-1}$$

Thus, there is a subtle difference between linear mappings L and matrices A. A is a representation of L that also takes the specific bases into account.

Linear Spaces

Linear Mapping

Differential

Two Theorems

If we have $V = \mathbb{R}^n$ and a matrix $A \in \mathbb{R}^{n \times n}$, the matrix-vector multiplication defines a linear mapping:

$$L \colon \mathbb{R}^n \to \mathbb{R}^n$$
$$x \mapsto Ax$$

Let us assume that we want to change the bases of \mathbb{R}^n . To that end, both X and Y can be written in matrix form and we have

$$\mathcal{M}_Y^X(L) = Y \cdot A \cdot X^{-1}$$

Thus, there is a subtle difference between linear mappings L and matrices A. A is a representation of L that also takes the specific bases into account.

We say that two matrices A and B are similar, if there exists an invertible matrix X such that $B = X \cdot A \cdot X^{-1}$.

Differential

Linear Spaces

Linear Mapping

Differential

Two Theorems

While the concept of the derivative or differential is nowadays one of the basic concepts in modern mathematics, it took a while to find a clean mathematical definition.

Linear Spaces

Linear Mapping

Differential

Two Theorems

While the concept of the derivative or differential is nowadays one of the basic concepts in modern mathematics, it took a while to find a clean mathematical definition.

The notation $\frac{dy}{dx}$ is due to Leibniz who called dx and dy an "infinitely small change of" x resp. y.

Linear Spaces

Linear Mapping

Differential

Two Theorems

While the concept of the derivative or differential is nowadays one of the basic concepts in modern mathematics, it took a while to find a clean mathematical definition.

The notation $\frac{dy}{dx}$ is due to Leibniz who called dx and dy an "infinitely small change of" x resp. y.

In 1924, Courant mentioned that the idea of the differential as infinite small expression "lacks any meaning" and is therefore "useless".

Linear Spaces

Linear Mapping

Differential

Two Theorems

While the concept of the derivative or differential is nowadays one of the basic concepts in modern mathematics, it took a while to find a clean mathematical definition.

The notation $\frac{dy}{dx}$ is due to Leibniz who called dx and dy an "infinitely small change of" x resp. y.

In 1924, Courant mentioned that the idea of the differential as infinite small expression "lacks any meaning" and is therefore "useless".

The modern notion of derivatives and differential is due to Cauchy and Weierstraß, which we want to revise in the following.

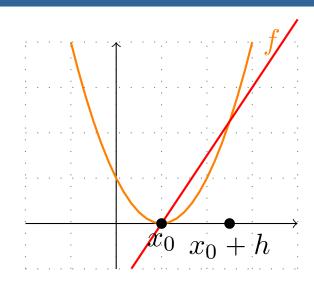
Derivative according to Cauchy

Linear Spaces

Linear Mapping

Differential

Two Theorems



The derivative $f'(x_0)$ of a function $f: \mathbb{R} \to \mathbb{R}$ at the position $x_0 \in \mathbb{R}$ is

$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

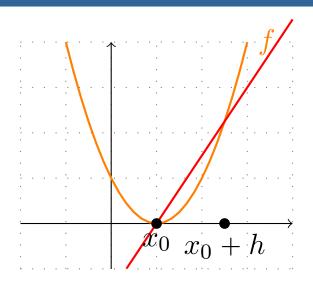
Derivative according to Cauchy

Linear Spaces

Linear Mapping

Differential

Two Theorems



The derivative $f'(x_0)$ of a function $f: \mathbb{R} \to \mathbb{R}$ at the position $x_0 \in \mathbb{R}$ is

$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

While this is a working mathematical definition, it is a bit difficult to extend it to arbitrary functions $f: \mathbb{R}^n \to \mathbb{R}^m$, since we cannot "divide by vectors".

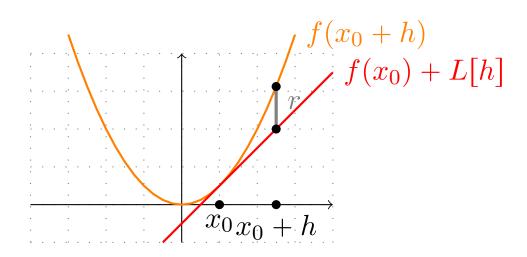
Differential according to Weierstraß

Linear Spaces

Linear Mapping

Differential

Two Theorems



Given a function $f: \mathbb{R} \to \mathbb{R}$ and a position $x_0 \in \mathbb{R}$, its differential $Df(x_0)$ is the unique linear mapping $L: \mathbb{R} \to \mathbb{R}$ such that

$$f(x_0 + h) = f(x_0) + L[h] + r(h)$$

$$\lim_{h \to 0} \frac{r(h)}{|h|} = 0$$

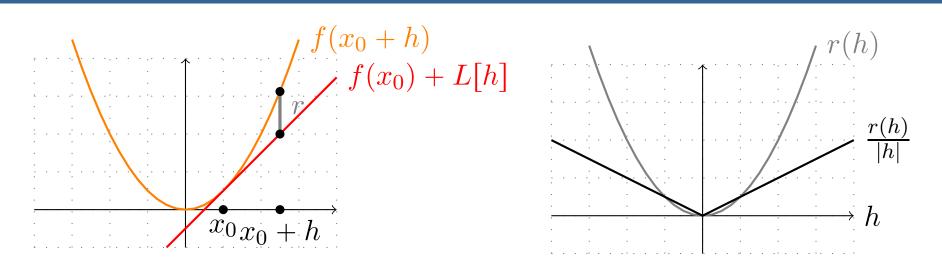
Differential according to Weierstraß

Linear Spaces

Linear Mapping

Differential

Two Theorems



Given a function $f: \mathbb{R} \to \mathbb{R}$ and a position $x_0 \in \mathbb{R}$, its differential $Df(x_0)$ is the unique linear mapping $L: \mathbb{R} \to \mathbb{R}$ such that

$$f(x_0 + h) = f(x_0) + L[h] + r(h)$$

$$\lim_{h \to 0} \frac{r(h)}{|h|} = 0$$

Linear Spaces

Linear Mapping

Differential

Two Theorems

Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be a differentiable function and $x_0 \in \mathbb{R}^m$. The differential

$$Df(x_0) \colon \mathbb{R}^m \to \mathbb{R}^n$$

is a linear mapping.

Jacobi Matrix

Linear Spaces

Linear Mapping

Differential

Two Theorems

Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be a differentiable function and $x_0 \in \mathbb{R}^m$. The differential

$$Df(x_0) \colon \mathbb{R}^m \to \mathbb{R}^n$$

is a linear mapping.

Using the canonical bases $\{e_1, \ldots, e_m\}$ for \mathbb{R}^m and $\{e_1, \ldots, e_n\}$ for \mathbb{R}^n , $Df(x_0)$ can be written in matrix form, the Jacobi matrix

$$Df(x_0)[h] = J \cdot h$$

$$J = \begin{pmatrix} J_{1,1} & \cdots & J_{1,m} \\ \vdots & & \vdots \\ J_{n,1} & \cdots & J_{n,m} \end{pmatrix}$$

Jacobi Matrix

Linear Spaces

Linear Mapping

Differential

Two Theorems

Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be a differentiable function and $x_0 \in \mathbb{R}^m$. The differential

$$Df(x_0) \colon \mathbb{R}^m \to \mathbb{R}^n$$

is a linear mapping.

Using the canonical bases $\{e_1, \ldots, e_m\}$ for \mathbb{R}^m and $\{e_1, \ldots, e_n\}$ for \mathbb{R}^n , $Df(x_0)$ can be written in matrix form, the Jacobi matrix

$$Df(x_0)[h] = J \cdot h \qquad J = \begin{pmatrix} J_{1,1} & \cdots & J_{1,m} \\ \vdots & & \vdots \\ J_{n,1} & \cdots & J_{n,m} \end{pmatrix}$$

with

$$J_{i,j} = \langle e_i, J \cdot e_j \rangle = \langle e_i, Df(x_0)[e_j] \rangle = \lim_{h \to 0} \frac{f^i(x_0 + h \cdot e_j) - f^i(x_0)}{h} = \partial_j f^i(x_0)$$

Linear Spaces

Linear Mapping

Differential

Two Theorems

Let $f: \mathbb{R}^m \to \mathbb{R}^n$ and $g: \mathbb{R}^k \to \mathbb{R}^m$ be differentiable functions. Then we have

$$(f \circ g)(x_0 + h) = f(g(x_0) + Dg(x_0)[h] + r_g(h))$$

Linear Spaces

Linear Mapping

Differential

Two Theorems

Let $f: \mathbb{R}^m \to \mathbb{R}^n$ and $g: \mathbb{R}^k \to \mathbb{R}^m$ be differentiable functions. Then we have

$$(f \circ g)(x_0 + h) = f(g(x_0) + Dg(x_0)[h] + r_g(h))$$

$$= (f \circ g)(x_0) + Df(g(x_0))[Dg(x_0)[h] + r_g(h)] +$$

$$r_f(Dg(x_0)[h] + r_g(h))$$

Linear Spaces

Linear Mapping

Differential

Two Theorems

Let $f: \mathbb{R}^m \to \mathbb{R}^n$ and $g: \mathbb{R}^k \to \mathbb{R}^m$ be differentiable functions. Then we have

$$(f \circ g)(x_0 + h) = f(g(x_0) + Dg(x_0)[h] + r_g(h))$$

$$= (f \circ g)(x_0) + Df(g(x_0))[Dg(x_0)[h] + r_g(h)] +$$

$$r_f(Dg(x_0)[h] + r_g(h))$$

$$= (f \circ g)(x_0) + Df(g(x_0))[Dg(x_0)[h]] + r(h)$$

Linear Spaces

Linear Mapping

Differential

Two Theorems

Let $f: \mathbb{R}^m \to \mathbb{R}^n$ and $g: \mathbb{R}^k \to \mathbb{R}^m$ be differentiable functions. Then we have

$$(f \circ g)(x_0 + h) = f(g(x_0) + Dg(x_0)[h] + r_g(h))$$

$$= (f \circ g)(x_0) + Df(g(x_0))[Dg(x_0)[h] + r_g(h)] +$$

$$r_f(Dg(x_0)[h] + r_g(h))$$

$$= (f \circ g)(x_0) + Df(g(x_0))[Dg(x_0)[h]] + r(h)$$

Thus we have

$$D(\mathbf{f} \circ \mathbf{g})(x_0) = \mathbf{Df}(g(x_0)) \cdot \mathbf{Dg}(x_0)$$

Chain Rule (Example)

Linear Spaces

Linear Mapping

Differential

Two Theorems

Let
$$g_1, g_2 : \mathbb{R}^m \to \mathbb{R}^n$$
 and $f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ with $f(x,y) := x + y$, we have

$$D(g_1 + g_2)(x_0) = D(f \circ g)(x_0) = Df(g(x_0)) \cdot Dg(x_0)$$
$$= (\text{Id} \quad \text{Id}) \cdot \begin{pmatrix} Dg_1(x_0) \\ Dg_2(x_0) \end{pmatrix} = Dg_1(x_0) + Dg_2(x_0)$$

Chain Rule (Example)

Linear Spaces

Linear Mapping

Differential

Two Theorems

Let $g_1, g_2 : \mathbb{R}^m \to \mathbb{R}^n$ and $f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ with f(x,y) := x + y, we have

$$D(g_1 + g_2)(x_0) = D(f \circ g)(x_0) = Df(g(x_0)) \cdot Dg(x_0)$$
$$= (\text{Id} \quad \text{Id}) \cdot \begin{pmatrix} Dg_1(x_0) \\ Dg_2(x_0) \end{pmatrix} = Dg_1(x_0) + Dg_2(x_0)$$

Let $g_1, g_2 : \mathbb{R}^m \to \mathbb{R}$ and $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ with $f(x, y) := x \cdot y$, we have

$$D(g_1 \cdot g_2)(x_0) = D(f \circ g)(x_0) = Df(g(x_0)) \cdot Dg(x_0)$$

$$= (g_2(x_0) \quad g_1(x_0)) \cdot \begin{pmatrix} Dg_1(x_0) \\ Dg_2(x_0) \end{pmatrix}$$

$$= Dg_1(x_0) \cdot g_2(x_0) + Dg_2(x_0) \cdot g_1(x_0)$$

Two Theorems

Inverse Function Theorem

Linear Spaces

Linear Mapping

Differential

Two Theorems

If $f, f^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ are both continuously differentiable, we have

$$Id = D [f \circ f^{-1}(x)] = Df(f^{-1}(x)) \cdot D [f^{-1}](x)$$
$$D[f^{-1}](x) = Df(f^{-1}(x))^{-1}$$

Inverse Function Theorem

Linear Spaces Linear Mapping

Differential

Two Theorems

If $f, f^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ are both continuously differentiable, we have

$$Id = D [f \circ f^{-1}(x)] = Df(f^{-1}(x)) \cdot D [f^{-1}](x)$$
$$D[f^{-1}](x) = Df(f^{-1}(x))^{-1}$$

Interestingly, also the opposite is (locally) true

Theorem 1. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ cont. differentiable and $Df(x_0)$ invertible. Then there exist neighborhoods $U(x_0)$ and $V(y_0)$ with $y_0 = f(x_0)$ such that

- \blacksquare $f: U \to V$ is a bijection.
- f is continuously differentiable.
- \blacksquare f^{-1} is continuously differentiable.

Linear Mapping

Differential

Two Theorems

Usually, one defines the square root function in an implicit manner:

$$x - \sqrt{x^2} = 0$$

Usually, one defines the square root function in an implicit manner:

$$x - \sqrt{x^2} = 0$$

This can be formally done in the following way:

Theorem 2 (Square Root). Let $\Phi \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the function

$$\Phi(x,y) = x - y^2,$$

which satisfies $\Phi(x_0, y_0) = 0$ for $(x_0, y_0) = (4, 2)$.

Then there exist neighborhoods U(4), V(2) and unique $f: U \to V$ such that

■ f is continuously differentiable and f(4) = 2.

Linear Mapping

Differential

Two Theorems

Usually, one defines the square root function in an implicit manner:

$$x - \sqrt{x^2} = 0$$

This can be formally done in the following way:

Theorem 2 (Square Root). Let $\Phi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the function

$$\Phi(x,y) = x - y^2,$$

which satisfies $\Phi(x_0, y_0) = 0$ for $(x_0, y_0) = (4, 2)$.

Then there exist neighborhoods U(4), V(2) and unique $f: U \to V$ such that

- f is continuously differentiable and f(4) = 2.
- $\Phi(x, f(x)) = 0$ for all $x \in U$.
- $f'(x) = -\frac{\partial_x \Phi(x, f(x))}{\partial_x \Phi(x, f(x))} = \frac{1}{2f(x)}$

Implicit Function Theorem

Linear Spaces

Linear Mapping

Differential

Two Theorems

This can be generalized to the

Theorem 3 (Implicit Function Theorem). Let $\Phi \colon \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n$ be a cont. differentiable mapping which satisfies $\Phi(x_0, y_0) = 0$ for a $(x_0, y_0) \in \mathbb{R}^{m+n}$ and $\partial_y \Phi(x_0, y_0)$ is invertible.

Then there exist neighborhoods $U(x_0)$, $V(y_0)$ and a continuously differentiable function $f: U \to V$ such that

$$\Phi(x, f(x)) = 0$$

$$\forall x \in U$$

and

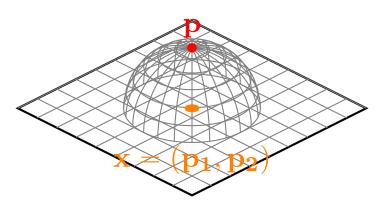
$$f(x_0) = y_0$$

$$f'(x) = -\left(\partial_y \Phi(x, f(x))\right)^{-1} \partial_x \Phi(x, f(x)) \qquad \forall x \in U$$

Linear Mapping

Differential

Two Theorems

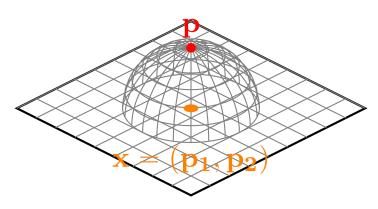


Note that we can also use the implicit function theorem if we are not looking for the inverse of a function.

Linear Mapping

Differential

Two Theorems



Note that we can also use the implicit function theorem if we are not looking for the inverse of a function.

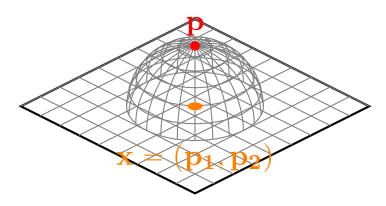
The points $p = (p_1, p_2, p_3)$ on the unit sphere satisfy

$$p_1^2 + p_2^2 + p_3^2 = 1$$

Linear Mapping

Differential

Two Theorems



Note that we can also use the implicit function theorem if we are not looking for the inverse of a function.

The points $p = (p_1, p_2, p_3)$ on the unit sphere satisfy

$$p_1^2 + p_2^2 + p_3^2 = 1$$

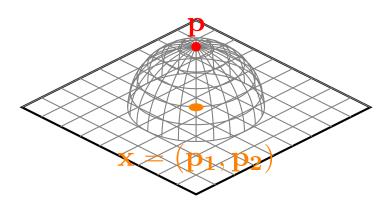
If we use the notation $x=(p_1,p_2)$ and $y=p_3$, the requirements for the implicit function theorem are satisfied for $x_0=(0,0)$, $y_0=1$ as well as

$$\Phi(x,y) = ||x||^2 + y^2 - 1$$

Linear Mapping

Differential

Two Theorems



In particular, there exists a neighborhood $U(x_0) \subset \mathbb{R}^2$ and a mapping $f \colon U \to \mathbb{R}$ such that

$$\varphi \colon U \to \mathbb{R}^3$$
$$x \mapsto (x, f(x))$$

maps the 2D region U onto a part of the sphere.

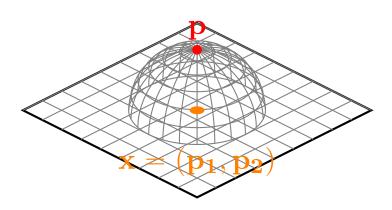
Implicit Function Theorem (Example)

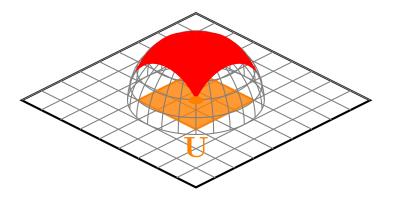
Linear Spaces

Linear Mapping

Differential

Two Theorems





In particular, there exists a neighborhood $U(x_0) \subset \mathbb{R}^2$ and a mapping $f \colon U \to \mathbb{R}$ such that

$$\varphi \colon U \to \mathbb{R}^3$$

$$x \mapsto (x, f(x))$$

maps the 2D region U onto a part of the sphere.

Functions like φ can be used to map a subset of a two-dimensionale linear space onto a subset of a two-dimensional curved space. These curved spaces are called manifolds.