Analysis of 3D Shapes (IN2238)

Frank R. Schmidt
Matthias Vestner

Summer Semester 2017

Conceptually, we have a very good understanding what a dimension is.
Sometimes, we refer to it as degrees of freedom.
Even for (linear) \mathbb{R}-vector spaces, the definition can be quite involved:

$$
\begin{aligned}
\operatorname{dim}(U) & =\min _{\substack{B \subset U \\
\operatorname{span}(B)=U}} \# B \\
\operatorname{span}(B) & =\left\{x \mid x=\sum_{b \in B} \lambda_{b} \cdot b, \lambda \in \mathbb{R}^{B}\right\}
\end{aligned}
$$

Conceptually, we have a very good understanding what a dimension is. Sometimes, we refer to it as degrees of freedom.

Even for (linear) \mathbb{R}-vector spaces, the definition can be quite involved:

$$
\begin{aligned}
\operatorname{dim}(U) & =\min _{\substack{B \subset U \\
\operatorname{span}(B)=U}} \# B \\
\operatorname{span}(B) & =\left\{x \mid x=\sum_{b \in B} \lambda_{b} \cdot b, \lambda \in \mathbb{R}^{B}\right\}
\end{aligned}
$$

For linear vector spaces U, it suffices to find a linear bijection $\Phi: \mathbb{R}^{d} \rightarrow U$ in order to prove that U is a vector space of dimension d.

Here, U can be an arbitrary \mathbb{R}-vector space. It does not need to be represented as a subset of an \mathbb{R}^{N}.

3. Manifolds and Shapes

Conceptually, we have a very good understanding what a dimension is. Sometimes, we refer to it as degrees of freedom.

Conceptually, we have a very good understanding what a dimension is.
Sometimes, we refer to it as degrees of freedom.
Even for (linear) \mathbb{R}-vector spaces, the definition can be quite involved:

$$
\begin{aligned}
\operatorname{dim}(U) & =\min _{\substack{B \subset U \\
\operatorname{span}(B)=U}} \# B \\
\operatorname{span}(B) & =\left\{x \mid x=\sum_{b \in B} \lambda_{b} \cdot b, \lambda \in \mathbb{R}^{B}\right\}
\end{aligned}
$$

For linear vector spaces U, it suffices to find a linear bijection $\Phi: \mathbb{R}^{d} \rightarrow U$ in order to prove that U is a vector space of dimension d.

Dimension of Curves

Even though the curve

$$
C:=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x^{2}\right\}
$$

is not a linear space, we like to think of it as a one-dimensional object. Why?

Dimension Manifold Submanifold Tangent Space
旤

Even though the curve

$$
C:=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x^{2}\right\}
$$

is not a linear space, we can find a bijection

$$
\varphi: \mathbb{R} \rightarrow C \quad t \mapsto\left(t, t^{2}\right)
$$

that introduces a one-dimensional coordinate $t \in \mathbb{R}$ to each $(x, y) \in C$.

IN2238 - Analysis of Three-Dimensional Shapes
3. Manifolds and Shapes - $6 / 24$

Even though the curve

$$
C:=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x^{2}\right\}
$$

is not a linear space, we can find a bijection

$$
\varphi: \mathbb{R} \rightarrow C \quad t \mapsto\left(t, t^{2}\right)
$$

that introduces a one-dimensional coordinate $t \in \mathbb{R}$ to each $(x, y) \in C$.
For what kind of sets C can we define a "curved" dimension?
What kind of functions φ guarantee a unique dimension?

Definition 1 (Open Set). A set $O \subset \mathbb{R}^{n}$ is called open iff

$$
x \in O \quad \Rightarrow \quad \exists \varepsilon>0: B_{\varepsilon}(x) \subset O,
$$

where $B_{\varepsilon}(x):=\left\{y \in \mathbb{R}^{n} \mid\|x-y\|<\varepsilon\right\}$ is a ball of radius ε centered at $x \in \mathbb{R}^{n}$.
Definition 2 (Relatively Open Set). Given a subset $X \subset \mathbb{R}^{n}$, we call $O \subset X$ relatively open iff there exists an open set $\hat{O} \subset \mathbb{R}^{n}$ of \mathbb{R}^{n} such that

$$
O=\hat{O} \cap X
$$

The set $\mathcal{T}(X)$ of all relatively open subsets is called the topology of X.
Definition 3 (Continuous Mappings). Given subsets $X \subset \mathbb{R}^{m}$ and $Y \subset \mathbb{R}^{n}$, we call a mapping $f: X \rightarrow Y$ continuous iff

$$
O \in \mathcal{T}(Y) \quad \Rightarrow \quad f^{-1}(O) \in \mathcal{T}(X)
$$

in2238-Analysis of Three Dimensional Shapes

3. Manifiods and Shapes $-7 / 2$

Theorem 1 (Cantor, 1877). Given the interval $I=[0,1]$, there is a bijection $\varphi: I \rightarrow I^{2}$.

Theorem 2 (Peano, 1890). Given the interval $I=[0,1]$, there is a continuous bijection $\varphi: I \rightarrow I^{2}$.

Even though the curve

$$
C:=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x^{2}\right\}
$$

is not a linear space, we can find a bijection

$$
\varphi: \mathbb{R} \rightarrow C \quad t \mapsto\left(t, t^{2}\right)
$$

that introduces a one-dimensional coordinate $t \in \mathbb{R}$ to each $(x, y) \in C$.
For what kind of sets C can we define a "curved" dimension?

Definition 1 (Open Set). A set $O \subset \mathbb{R}^{n}$ is called open iff

$$
x \in O \quad \Rightarrow \quad \exists \varepsilon>0: B_{\varepsilon}(x) \subset O,
$$

where $B_{\varepsilon}(x):=\left\{y \in \mathbb{R}^{n} \mid\|x-y\|<\varepsilon\right\}$ is a ball of radius ε centered at $x \in \mathbb{R}^{n}$.
Definition 2 (Relatively Open Set). Given a subset $X \subset \mathbb{R}^{n}$, we call $O \subset X$ relatively open iff there exists an open set $\hat{O} \subset \mathbb{R}^{n}$ of \mathbb{R}^{n} such that

$$
O=\hat{O} \cap X
$$

The set $\mathcal{T}(X)$ of all relatively open subsets is called the topology of X.

Theorem 1 (Cantor, 1877). Given the interval $I=[0,1]$, there is a bijection $\varphi: I \rightarrow I^{2}$.

Theorem 1 (Cantor, 1877). Given the interval $I=[0,1]$, there is a bijection $\varphi: I \rightarrow I^{2}$.

Theorem 2 (Peano, 1890). Given the interval $I=[0,1]$, there is a continuous bijection $\varphi: I \rightarrow I^{2}$.

Definition 4. A bijection $\varphi: X \rightarrow Y$ is called a homeomorphism iff φ and φ^{-1} are continuous.

Theorem 1 (Cantor, 1877). Given the interval $I=[0,1]$, there is a bijection $\varphi: I \rightarrow I^{2}$.

Theorem 2 (Peano, 1890). Given the interval $I=[0,1]$, there is a continuous bijection $\varphi: I \rightarrow I^{2}$.

Definition 4. A bijection $\varphi: X \rightarrow Y$ is called a homeomorphism iff φ and φ^{-1} are continuous.

Theorem 3 (Brouwer, 1911). The existence of a homeomorphism $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ implies $m=n$.

IN2238 - Analysis of Three-Dimensional Shapes
3. Manifolds and Shapes - 8 / 24

In practice, it is often difficult to check whether a function is continuous. To check differentiability is on the other hand easier. Thus, we would like to extend the idea of homeomorphisms to the class of differentiable functions.

Definition 5. A bijection $\varphi: X \rightarrow Y$ is called a C^{k}-diffeomorphism iff φ and φ^{-1} are C^{k}-functions, i.e., for all $i \leqslant k$ exist the i-th derivatives of these functions and they are continuous. C^{∞}-diffeomorphisms are called (smooth) diffeomorphisms.

In practice, it is often difficult to check whether a function is continuous. To check differentiability is on the other hand easier. Thus, we would like to extend the idea of homeomorphisms to the class of differentiable functions.

Definition 5. A bijection $\varphi: X \rightarrow Y$ is called a C^{k}-diffeomorphism iff φ and φ^{-1} are C^{k}-functions, i.e., for all $i \leqslant k$ exist the i-th derivatives of these functions and they are continuous. C^{∞}-diffeomorphisms are called (smooth) diffeomorphisms.

Problem: While we know how to "extend" the idea of dimensions to \mathbb{R}^{n} non-linearly, we still need to define when $C \subset \mathbb{R}^{2}$ is a 1 D object.

Solution: Concept of manifolds and sub-manifolds.

IN2238 - Analysis of Three-Dimensional Shapes
3. Manifolds and Shapes - 9 / 24

Definition 6. $\left(M_{0}, \varphi_{0}\right)$ is called an n-dimensional chart of M iff $\varphi_{0}: M_{0} \rightarrow U_{0}$ is a homeomorphism between the open sets $M_{0} \subset M$ and $U_{0} \subset \mathbb{R}^{n}$.

In practice, it is often difficult to check whether a function is continuous. To check differentiability is on the other hand easier. Thus, we would like to extend the idea of homeomorphisms to the class of differentiable functions.

IN2238 - Analysis of Three-Dimensional Shapes

In practice, it is often difficult to check whether a function is continuous. To check differentiability is on the other hand easier. Thus, we would like to extend the idea of homeomorphisms to the class of differentiable functions.

Definition 5. A bijection $\varphi: X \rightarrow Y$ is called a C^{k}-diffeomorphism iff φ and φ^{-1} are C^{k}-functions, i.e., for all $i \leqslant k$ exist the i-th derivatives of these functions and they are continuous. C^{∞}-diffeomorphisms are called (smooth) diffeomorphisms.

Problem: While we know how to "extend" the idea of dimensions to \mathbb{R}^{n} non-linearly, we still need to define when $C \subset \mathbb{R}^{2}$ is a 1D object.

IN2238 - Analysis of Three-Dimensional Shapes
3. Manifolds and Shapes - 9 / 24

Manifold

Definition 6. $\left(M_{0}, \varphi_{0}\right)$ is called an n-dimensional chart of M iff $\varphi_{0}: M_{0} \rightarrow U_{0}$ is a homeomorphism between the open sets $M_{0} \subset M$ and $U_{0} \subset \mathbb{R}^{n}$.
Definition 7. A collection $\left(M_{i}, \varphi_{i}\right)_{i \in \mathcal{I}}$ of charts is called a C^{k} atlas iff $M=\bigcup_{i \in \mathcal{I}} M_{i}$ and for any two charts φ_{i} and φ_{j}, the mapping $\varphi_{i} \circ \varphi_{j}^{-1}$ is a C^{k}-diffeomorphism between $\varphi_{j}\left(M_{i} \cap M_{j}\right)$ and $\varphi_{i}\left(M_{i} \cap M_{j}\right)$.

Definition 8. A set M with a C^{∞} atlas $\left(M_{i}, \varphi_{i}\right)_{i \in \mathcal{I}}$ is called a (smooth) manifold.

Definition 8. A set M with a C^{∞} atlas $\left(M_{i}, \varphi_{i}\right)_{i \in \mathcal{I}}$ is called a (smooth) manifold.

Definition 9. Given a manifold M, a function $f: M \rightarrow \mathbb{R}^{d}$ is called smooth iff for all charts $\left(M_{i}, \varphi_{i}\right)$, the function $f \circ \varphi_{i}^{-1}: \varphi_{i}\left(M_{i}\right) \rightarrow \mathbb{R}^{d}$ is smooth.

IN2238 - Analysis of Three-Dimensional Shapes
3. Manifolds and Shapes - 12 / 24

Definition 8. A set M with a C^{∞} atlas $\left(M_{i}, \varphi_{i}\right)_{i \in \mathcal{I}}$ is called a (smooth) manifold.
Definition 9. Given a manifold M, a function $f: M \rightarrow \mathbb{R}^{d}$ is called smooth iff for all charts $\left(M_{i}, \varphi_{i}\right)$, the function $f \circ \varphi_{i}^{-1}: \varphi_{i}\left(M_{i}\right) \rightarrow \mathbb{R}^{d}$ is smooth.
Whether a function is smooth depends very much on the chosen atlas. Therefore, we are more interested in submanifolds.

```
IN2238 - Analysis of Three-Dimensional Shapes
```

Uitr	Dimension	Generalization of \mathbb{R}^{n} Submanifold Tangent Space					

We like to think of n-dimensional manifolds as extensions of the linear space \mathbb{R}^{n}. In order to see this we will define the "manifold" \mathbb{R}^{n}.
Let $\left(M_{i}\right)_{i \in \mathcal{I}}$ be a collection of open sets $M_{i} \subset \mathbb{R}^{n}$ that cover \mathbb{R}^{n}. Choices are:

$$
\begin{array}{lc}
\mathcal{I}=\mathbb{Z}^{n} & M_{\left(i_{1}, \ldots, i_{n}\right)}=\left\{x \in \mathbb{R}^{n} \mid\|x-i\|<\sqrt{n}\right\} \\
\mathcal{I}=\{0\} & M_{0}=\mathbb{R}^{n}
\end{array}
$$

We like to think of n-dimensional manifolds as extensions of the linear space \mathbb{R}^{n}. In order to see this we will define the "manifold" \mathbb{R}^{n}.

Let $\left(M_{i}\right)_{i \in \mathcal{I}}$ be a collection of open sets $M_{i} \subset \mathbb{R}^{n}$ that cover \mathbb{R}^{n}. Choices are:

$$
\begin{array}{lc}
\mathcal{I}=\mathbb{Z}^{n} & M_{\left(i_{1}, \ldots, i_{n}\right)}=\left\{x \in \mathbb{R}^{n} \mid\|x-i\|<\sqrt{n}\right\} \\
\mathcal{I}=\{0\} & M_{0}=\mathbb{R}^{n}
\end{array}
$$

Given these sets, the charts can be choosen as $\left(M_{i}, \mathrm{id}_{M_{i}}\right)$ and for overlapping charts, we obtain the diffeomorphism

$$
\begin{aligned}
\varphi_{i} \circ \varphi_{j}^{-1}: M_{i} \cap M_{j} & \rightarrow M_{i} \cap M_{j} \\
p & \mapsto p
\end{aligned}
$$

IN2z38 - Analysis of Three. Dimensional Shapes

We like to think of n-dimensional manifolds as extensions of the linear space \mathbb{R}^{n}. In order to see this we will define the "manifold" \mathbb{R}^{n}.
Let $\left(M_{i}\right)_{i \in \mathcal{I}}$ be a collection of open sets $M_{i} \subset \mathbb{R}^{n}$ that cover \mathbb{R}^{n}. Choices are:

$$
\begin{aligned}
\mathcal{I}=\mathbb{Z}^{n} & M_{\left(i_{1}, \ldots, i_{n}\right)}
\end{aligned}=\left\{x \in \mathbb{R}^{n} \mid\|x-i\|<\sqrt{n}\right\},
$$

Given these sets, the charts can be choosen as $\left(M_{i}, \mathrm{id}_{M_{i}}\right)$ and for overlapping charts, we obtain the diffeomorphism

$$
\begin{aligned}
\varphi_{i} \circ \varphi_{j}^{-1}: M_{i} \cap M_{j} & \rightarrow M_{i} \cap M_{j} \\
p & \mapsto p
\end{aligned}
$$

With these atlases, we obtain that the "smooth functions" f on the "manifold" \mathbb{R}^{n} are exactly the functions $C^{\infty}\left(\mathbb{R}^{n}\right)$.

Proof (Cont.) As a result, we can define the smooth function

$$
\begin{aligned}
\psi: U_{i} \times \mathbb{R}^{n-m} & \rightarrow \mathbb{R}^{n} \\
\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n-m}\right) & \mapsto x_{i}(u)+A_{0} \cdot v
\end{aligned}
$$

with $D \psi(\hat{u}, 0)=\left(\begin{array}{ll}D x_{i}(\hat{u}) & A_{0}\end{array}\right)=A$. Using the Inverse Function Theorem proves the lemma for $\varphi:=\psi^{-1}$.

Proof (Cont.) As a result, we can define the smooth function

$$
\begin{aligned}
\psi: U_{i} \times \mathbb{R}^{n-m} & \rightarrow \mathbb{R}^{n} \\
\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n-m}\right) & \mapsto x_{i}(u)+A_{0} \cdot v
\end{aligned}
$$

with $D \psi(\hat{u}, 0)=\left(D x_{i}(\hat{u}) \quad A_{0}\right)=A$. Using the Inverse Function Theorem proves the lemma for $\varphi:=\psi^{-1}$.

Now we can prove that

$$
C:=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x^{2}\right\}
$$

is a manifold of dimension 1. How?

In practice, it is often difficult to define different charts or coordinate functions. Instead, we like to define the manifold M by formulating certain constraints, e.g.,

$$
\mathbb{S}^{2}:=\left\{x \in \mathbb{R}^{3} \mid\|x\|^{2}=1\right\}
$$

In practice, it is often difficult to define different charts or coordinate functions. Instead, we like to define the manifold M by formulating certain constraints, e.g.,

$$
\mathbb{S}^{2}:=\left\{x \in \mathbb{R}^{3} \mid\|x\|^{2}=1\right\}
$$

Lemma 2. Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and a regular value $c \in \mathbb{R}^{k}$, i.e.,

$$
x \in f^{-1}(c) \quad \Rightarrow \quad \operatorname{rank}(D f(x))=k
$$

Then, $M:=f^{-1}(c)$ is a submanifold of co-dimension k.

Example. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $f(x)=\|x\|^{2}$ and $c>0$.

Proof. Let $p \in M \subset \mathbb{R}^{n}$. Since $D f(p)$ is of rank k, we can find k columns of $D f(p)$ that are linear independent. W.l.o.g. we assume that these k columns are the last k. Thus, the function $f: \mathbb{R}^{n-k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ satisfies the Implicit Function Theorem with respect to $\left(x_{0}, y_{0}\right)=p$.
The implicit function $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n-k}$ defines a coordinate mapping $x: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ via $x(u):=(u, \varphi(u))$, which proves the lemma.

Proof. Let $p \in M \subset \mathbb{R}^{n}$. Since $D f(p)$ is of rank k, we can find k columns of $D f(p)$ that are linear independent. W.l.o.g. we assume that these k columns are the last k. Thus, the function $f: \mathbb{R}^{n-k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ satisfies the Implicit Function Theorem with respect to $\left(x_{0}, y_{0}\right)=p$.

Proof. Let $p \in M \subset \mathbb{R}^{n}$. Since $D f(p)$ is of rank k, we can find k columns of $D f(p)$ that are linear independent. W.I.o.g. we assume that these k columns are the last k. Thus, the function $f: \mathbb{R}^{n-k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ satisfies the Implicit Function Theorem with respect to $\left(x_{0}, y_{0}\right)=p$.
The implicit function $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n-k}$ defines a coordinate mapping $x: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ via $x(u):=(u, \varphi(u))$, which proves the lemma.

Note that the implicit submanifold can be transformed into an explicit submanifold.

Proof. Let $p \in M \subset \mathbb{R}^{n}$. Since $D f(p)$ is of rank k, we can find k columns of $D f(p)$ that are linear independent. W.l.o.g. we assume that these k columns are the last k. Thus, the function $f: \mathbb{R}^{n-k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ satisfies the Implicit Function Theorem with respect to $\left(x_{0}, y_{0}\right)=p$.
The implicit function $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n-k}$ defines a coordinate mapping $x: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ via $x(u):=(u, \varphi(u))$, which proves the lemma.

Note that the implicit submanifold can be transformed into an explicit submanifold.

Given a point $p \in M$ the created coordinate mapping x satisfies

$$
D x(p)=\binom{\text { id }}{-\left[\frac{\partial f}{\partial y}(p)\right]^{-1} \frac{\partial f}{\partial x}(p)}
$$

With these definitions in place, we can finally define what we mean by an object and a shape

IN2238 - Analysis of Three-Dimensional Shapes

With these definitions in place, we can finally define what we mean by an object and a shape

Definition 11 (Object). An object of dimension d is an open subset $X \subset \mathbb{R}^{d}$ such that its boundary $B:=\partial X$ is a submanifold of dimension $d-1$. We will use the notation \mathcal{O}^{d} for the space of all objects of dimension d.

With these definitions in place, we can finally define what we mean by an object and a shape
Definition 11 (Object). An object of dimension d is an open subset $X \subset \mathbb{R}^{d}$ such that its boundary $B:=\partial X$ is a submanifold of dimension $d-1$. We will use the notation \mathcal{O}^{d} for the space of all objects of dimension d.

Some authors only study the boundary of an object.
Definition 12 (Shape). Given an equivalence relation \sim of \mathcal{O}^{d}, the equivalence class $[O]$ of an object $O \in \mathcal{O}^{d}$ is its shape. We call the set of all shapes the shape space \mathcal{O}^{d} / \sim.

With these definitions in place, we can finally define what we mean by an object and a shape
Definition 11 (Object). An object of dimension d is an open subset $X \subset \mathbb{R}^{d}$ such that its boundary $B:=\partial X$ is a submanifold of dimension $d-1$. We will use the notation \mathcal{O}^{d} for the space of all objects of dimension d.

Some authors only study the boundary of an object.
Definition 12 (Shape). Given an equivalence relation \sim of \mathcal{O}^{d}, the equivalence class $[O]$ of an object $O \in \mathcal{O}^{d}$ is its shape. We call the set of all shapes the shape space \mathcal{O}^{d} / \sim.

For now we will focus on an equivalence relation that uses a combination of rotation, translation and scaling to define equivalent objects.

IN2238 - Analysis of Three-Dimensional Shapes
3. Manifolds and Shapes - $20 / 24$

Since we want to focus on smooth submanifolds M of dimension m, we like to approximate the direct vicinity of a point $p \in M$ with a linear vector space of dimension m. This leads to the concept of the tangent space

Definition 13 (Tangent Space). Let $M \subset \mathbb{R}^{n}$ be a submanifold of dimension $m \leqslant n$ that is given via coordinate functions $\left(x_{i}, U_{i}\right)_{i \in \mathcal{I}}$. Given $i \in \mathcal{I}$ such that $p=x_{i}(u)$, we define the tangent space $T_{p} M$ of M at the position p as

$$
T_{p} M:=\left\{D x_{i}(u) \cdot v \mid v \in \mathbb{R}^{m}\right\} \quad\left[=\operatorname{Im}\left(D x_{i}(u)\right)\right]
$$

IN2238 - Analysis of Three-Dimensional Shapes

3. Manifolds and Shapes - 22 / 24

Since we want to focus on smooth submanifolds M of dimension m, we like to approximate the direct vicinity of a point $p \in M$ with a linear vector space of dimension m. This leads to the concept of the tangent space.

Definition 13 (Tangent Space). Let $M \subset \mathbb{R}^{n}$ be a submanifold of dimension $m \leqslant n$ that is given via coordinate functions $\left(x_{i}, U_{i}\right)_{i \in \mathcal{I}}$. Given $i \in \mathcal{I}$ such that $p=x_{i}(u)$, we define the tangent space $T_{p} M$ of M at the position p as

$$
T_{p} M:=\left\{D x_{i}(u) \cdot v \mid v \in \mathbb{R}^{m}\right\} \quad\left[=\operatorname{Im}\left(D x_{i}(u)\right)\right]
$$

Lemma 3 (Tangent Space). The tangent space $T_{p} M \subset \mathbb{R}^{n}$ is a linear subspace and does not depend on the choice of the coordinate map $\left(x_{i}, U_{i}\right)$.

Proof. Excercise.

Lemma 4 (Tangent Space). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a smooth function with regular value $c \in \mathbb{R}^{k}$ and $M:=f^{-1}(c)$ the manifold with respect to this value. For every $p \in M$ we have

$$
T_{p} M:=\left\{v \in \mathbb{R}^{n} \mid D f(p) \cdot v=0\right\} \quad[=\operatorname{ker}(D f(p))]
$$

Proof. The coordinate mapping x that we constructed for a implicetly defined manifold is $D x(u)=\binom{$ id }{$-\left[\frac{\partial f}{\partial y}(p)\right]^{-1} \frac{\partial f}{\partial x}(p)}$.

Lemma 4 (Tangent Space). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a smooth function with regular value $c \in \mathbb{R}^{k}$ and $M:=f^{-1}(c)$ the manifold with respect to this value. For every $p \in M$ we have

$$
T_{p} M:=\left\{v \in \mathbb{R}^{n} \mid D f(p) \cdot v=0\right\} \quad[=\operatorname{ker}(D f(p))]
$$

Proof. The coordinate mapping x that we constructed for a implicetly defined manifold is $D x(u)=\binom{$ id }{$-\left[\frac{\partial f}{\partial y}(p)\right]^{-1} \frac{\partial f}{\partial x}(p)}$. Using linear algebra, we obtain

$$
\begin{aligned}
& y \in T_{p} M^{\perp}=\operatorname{Im}(D x(u))^{\perp}=\operatorname{ker}\left(D x(u)^{\top}\right) \\
\Rightarrow & 0=y_{1}-\left[\frac{\partial f}{\partial x}(p)\right]^{\top}\left[\frac{\partial f}{\partial y}(p)\right]^{-\top} y_{2}
\end{aligned}
$$

Since we want to focus on smooth submanifolds M of dimension m, we like to approximate the direct vicinity of a point $p \in M$ with a linear vector space of dimension m. This leads to the concept of the tangent space.

Definition 13 (Tangent Space). Let $M \subset \mathbb{R}^{n}$ be a submanifold of dimension $m \leqslant n$ that is given via coordinate functions $\left(x_{i}, U_{i}\right)_{i \in \mathcal{I}}$. Given $i \in \mathcal{I}$ such that $p=x_{i}(u)$, we define the tangent space $T_{p} M$ of M at the position p as

$$
T_{p} M:=\left\{D x_{i}(u) \cdot v \mid v \in \mathbb{R}^{m}\right\} \quad\left[=\operatorname{Im}\left(D x_{i}(u)\right)\right]
$$

Lemma 3 (Tangent Space). The tangent space $T_{p} M \subset \mathbb{R}^{n}$ is a linear subspace and does not depend on the choice of the coordinate map $\left(x_{i}, U_{i}\right)$.

Lemma 4 (Tangent Space). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a smooth function with regular value $c \in \mathbb{R}^{k}$ and $M:=f^{-1}(c)$ the manifold with respect to this value. For every $p \in M$ we have

$$
T_{p} M:=\left\{v \in \mathbb{R}^{n} \mid D f(p) \cdot v=0\right\} \quad[=\operatorname{ker}(D f(p))]
$$

IN2238 - Analysis of Three-Dimensional Shapes

Lemma 4 (Tangent Space). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a smooth function with regular value $c \in \mathbb{R}^{k}$ and $M:=f^{-1}(c)$ the manifold with respect to this value. For every $p \in M$ we have

$$
T_{p} M:=\left\{v \in \mathbb{R}^{n} \mid D f(p) \cdot v=0\right\} \quad[=\operatorname{ker}(D f(p))]
$$

Proof. The coordinate mapping x that we constructed for a implicetly defined manifold is $D x(u)=\binom{$ id }{$-\left[\frac{\partial f}{\partial y}(p)\right]^{-1} \frac{\partial f}{\partial x}(p)}$. Using linear algebra, we obtain

$$
y \in T_{p} M^{\perp}=\operatorname{Im}(D x(u))^{\perp}=\operatorname{ker}\left(D x(u)^{\top}\right)
$$

IN2238-Analysis of Three Dimensional Shapes

Lemma 4 (Tangent Space). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a smooth function with regular value $c \in \mathbb{R}^{k}$ and $M:=f^{-1}(c)$ the manifold with respect to this value. For every $p \in M$ we have

$$
T_{p} M:=\left\{v \in \mathbb{R}^{n} \mid D f(p) \cdot v=0\right\} \quad[=\operatorname{ker}(D f(p))]
$$

Proof. The coordinate mapping x that we constructed for a implicetly defined manifold is $D x(u)=\binom{\underset{\text { id }}{\text { id }}}{-\left[\frac{\partial f}{\partial y}(p)\right]^{-1} \frac{\partial f}{\partial x}(p)}$. Using linear algebra, we obtain

$$
\begin{aligned}
& y \in T_{p} M^{\perp}=\operatorname{Im}(D x(u))^{\perp}=\operatorname{ker}\left(D x(u)^{\top}\right) \\
\Rightarrow & 0=y_{1}-\left[\frac{\partial f}{\partial x}(p)\right]^{\top}\left[\frac{\partial f}{\partial y}(p)\right]^{-\top} y_{2}
\end{aligned}
$$

Choosing $y_{2}=\left[\frac{\partial f}{\partial y}(p)\right]^{\top} \cdot v$ leads to $y_{1}=\left[\frac{\partial f}{\partial x}(p)\right]^{\top} \cdot v$

Thitr

Literature

Dimension

■ Peano, Sur une courbe, qui remplit toute une aire plane, 1890, Math. Annalen (36), 157-160.

Proof. The coordinate mapping x that we constructed for a implicetly defined manifold is $D x(u)=\binom{$ id }{$-\left[\frac{\partial f}{\partial y}(p)\right]^{-1} \frac{\partial f}{\partial x}(p)}$. Using linear algebra, we obtain

$$
\begin{aligned}
& y \in T_{p} M^{\perp}=\operatorname{Im}(D x(u))^{\perp}=\operatorname{ker}\left(D x(u)^{\top}\right) \\
\Rightarrow & 0=y_{1}-\left[\frac{\partial f}{\partial x}(p)\right]^{\top}\left[\frac{\partial f}{\partial y}(p)\right]^{-\top} y_{2}
\end{aligned}
$$

Choosing $y_{2}=\left[\frac{\partial f}{\partial y}(p)\right]^{\top} \cdot v$ leads to $y_{1}=\left[\frac{\partial f}{\partial x}(p)\right]^{\top} \cdot v$, which proves $T_{p} M=\operatorname{Im}\left(D f(p)^{\top}\right)^{\perp}=\operatorname{ker}(D f(p))$.

IN2238 - Analysis of Three-Dimensional Shapes \quad 3. Manifolds and Shapes - 23 / 24

Dimension

■ Peano, Sur une courbe, qui remplit toute une aire plane, 1890, Math. Annalen (36), 157-160.
■ Brouwer, Beweis der Invarianz der Dimensionenzahl, 1911, Math. Annalen (70), 161-165.

Smooth Manifolds

IN2238 - Analysis of Three-Dimensional Shapes

Dimension

■ Peano, Sur une courbe, qui remplit toute une aire plane, 1890, Math. Annalen (36), 157-160.

- Brouwer, Beweis der Invarianz der Dimensionenzahl, 1911, Math. Annalen (70), 161-165.

Smooth Manifolds

■ Poincaré, Analysis Situs, 1895, Journal de l'École Polytechnique.

