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Differential Push-Forward Curvature of 2D Objects

Differential

Differential according to Weierstral3

Differential Push-Forward Curvature of 2D Objects

f(zo + h)
f(zo) + L[R]

Toxg + h

Given a function f: R — R and a postion x¢ € R, its differential D f(z¢) is the
unique linear mapping L: R — R such that

f(zo+h) =f(zo) + L[h] + r(h)
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_Chain Rule
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Let f: R™ — R" and g: R¥ — R™ be differentiable functions. Then we have

(fog)(wo+h) =f (g(x0) + Dg(xo)[h] + 74(h))
=(fog)(zo) + Df(g(zo)) [Dg(zo)[h] + r4(h)] +
1y (Dy(ea) ] + (1)
=(f o g)(wo) + Df(g(wo)) [Dy(xo)[h]] + r(h)

Thus we have

D(f o g)(x0) = Df(g(z0))°Dg(xo)
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4. Differential and Curvature

Derivative according to Cauchy
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The derivative f'(z¢) of a function f: R — R at the position zp € R is

(o) == ){%M

While this is a working mathematical definition, it is a bit difficult to extend it to
arbitrary functions f: R™ — R™, since we cannot “divide by vectors”.
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Let f: R™ — R™ be a differentiable function and z¢ € R™. The differential

Jacobi Matrix

Differential Push-Forward Curvature of 2D Objects

Df(zo): R™ - R"
is a linear mapping.

Using the canonical bases {e1,...,en} for R™ and {eq,...
can be written in matrix form, the Jacobi matrix

.ven} for R”r Df(‘rU)

Jl,l Jl,m.
Df(xg)[h] = J - h J = : :

-]n.l e Jn,m,

fi(zo+ h-ej) = fi(wo)

Cei, J - ej) = {ei, D f(wo)[ej]) = Jim - A = 0;f(z0)
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Interpretation of the Differential m
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Given a function f: R™ — R™ and a position p € R™, the equation
fp+v) =f(p) + Df(p)[v] +r(v)

can be interpreted as following:

p describes a point in the space on which f is defined,

v describes the direction in which we change the point p

D f(p)[v] describes the direction in which f changes if we change the point p
in the direction v.

For vector spaces, there is no distinction between points and directions. For
manifolds M, points p will be on the manifold and directions on the tangent space
T,M.

P
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Push-Forward

1'%t » Alternative Definition of Tangent Vectorsm
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Akt Curve Representation of Tangent Vectorsm
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Given a point p € M of a d-dimensional submanifold M < R™, we can represent a
tangent vector v € T,M as a curve ¢ : (—¢,e) — M with ¢(0) = p.

To see this, let us look at the manifold from the point of view of a coordinate
mapping z: U — M with 0 € U < R? and z(0) = p.

Since v € T,M = Im(Dx(0)), we know that there is an h € R? such that
Dx(0)[h] = v.

Using
c: (—e,e) > M c(t)y=a(t-h),

we have

Dc(0) = Dz(0-h)-h =v.

ferential and Curvat

Differential as Push-Forward

Differential Push-Forward Curvature of 2D Objects

Given a point p € M of a d-dimensional submanifold M < R", we define

CpM = {c: (—e,e) > M|3e > 0: c is smooth and ¢(0) = p}.

The goal is to define T, M by defining an equivalence relation on C,M:

= DCl(O) = DCQ(U),

Cc1 ~ C2
It is easy to check that ~ satisfies reflexivity, symmetry and transitivity.

It turns out T,M = C,M/ ~, which provides us with an alternative definition for
the tangent space T, M.

The advantage of this rather technical definition is that for any v € T, M we can
choose a curve c € v that passes through p and vice versa, i.e., any curve ¢ that
passes through a point p defines a tangent vector v := [c].
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Push-Forward of Submanifolds
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Given two submanifolds M < R™ and N < R" as well as a function f: R™ — R"
with f(M) = N. Forpe M and ¢ = f(p) € N, Df(p) is
Df(p): T,M -T,N
[c] ~[fod
Assuming that x;,: U, — M is a coordinate mapping for p = x,,(0) and

2q: Uy — N is a coordinate mapping for ¢ = x4(0), the push-forward definition
becomes

Df(p)[v] = %(zq ox;l o foay)(t-h) Y

where v = D,(0)[h].

It is easy to show that the push-forward is a linear mapping. Excercise.
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How to Compute the Differential m

Differential Push-Forward Curvature of 2D Objects

Given two submanifolds M < R™ and N < R" as well as a function f: R™ — R"
with f(M) = N. Forpe M and ¢ = f(p) e N, Df(p) is

Df(p): T,M —-T,N
[c] —[foc]

Assuming that x;,: U, — M is a coordinate mapping for p = x,(0) and
24: Uy — N is a coordinate mapping for ¢ = x4(0), the push-forward definition
becomes

Df(p)[v] = mr,x (D(f o z,)(0)[A])

where v = Dz,(0)[h] and
nr,N(v) is the orthogonal projection of v € R to Ty N.
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Given two submanifolds M and N as well as a function f: M — N. Forpe M
and ¢ = f(p) € N, the differential D f(p) is the push-forward

Df(p): TyM —T,N
[e] ~[foc]

Assuming that z,: U, — M is a coordinate mapping for p = ,(0) and
xq: Uy — N is a coordinate mapping for ¢ = x4(0), the push-forward definition
becomes

)

0
D v]= =(foux -h
Sl = G (Fom)e-h)|

where v = Dx,,(0)[R] %xp(t . h)|t:0.
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Given coordinate mappings ;,: U, — M and x4: U; — N with p = 2,(0) and
q = f(p) = 24(0), the differential becomes

Coordinate! Interpretation

Differential Push-Forward Curvature of 2D Objects

iG] = Sagougto fou)eh)

t=0

If we were to apply the chain rule, we would obtain

Df(p)[v] = D(xq)(z7}(9)) - D(x4")(g) - DE(p) - Dxp(0) - b

D,(0)h defines the tangent vector v € T,,M.

Df(p) is the differential of f ignoring the submanifolds M and N.
Df(p)Dxy(0)h is the differential of f only taking M into account.
D(x;1)(q) is the pseudo-inverse of D(xg)(x;(q)).

D(xg)(x7(q)) - D(x3")(q) projects a vector onto T;N.
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Linear mappings are commonly represented by matrices. We want to emphasize
the difference between a matrix and a linear mapping.

What.is a:Matrix? (Recap)

Differential Push-Forward Curvature of 2D Objects

Given an m-dimensional R-vector space X, an n-dimensional R-vector space Y’
and a linear mapping L: X — Y, we can represent L by finite many scalars.

To this end, let Bx = {z1,...,2n} and By = {y1,...,yn} bases of X and YV’
respectively. Then we know that for each z; € Bx we have

n
L(z;) = Z AijYi-
i=1

for some a;; € R.

We write this a;; in a matrix A and call A = Mgif (L) € R™ ™ the representing
matrix of L with respect to the basis Bx and By.
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Matrix of the Differential

Differential Push-Forward Curvature of 2D Objects

Given two submanifolds M and N as well as a function f: M — N. For pe M
and ¢ = f(p) € N, the differential Df(p): T,M — T;N is a linear mapping, but in
general we do not have a canonical matrix representation.

This means that any basis B, of T;,M and B, of T, N would define a different
matrix My’ (Df(p)) € R"™™ with n = dim(N) and m = dim(M).

Since T,M = Im(Dxz(0)), By = {Dz(0)[e1], ..., Dxz(0)[e;]} would be a natural
way of defining a basis of T, M. Nonetheless, the resulting matrix would then
depend on the coordinate mappings x, and x, that we choose for p € M and

q € N respectively.

While there is no unique matrix that describes the differential, it is important to
note that the image Im D f(p) is independent of the choosen coordinate mappings.
This was used for the definition of the tangent space.
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Planar_Curves and Normals

Differential Push-Forward Curvature of 2D Objects

Given a 2D object O and its boundary, the 1D submanifold M := 20O, we like to
define the normal vector n(p) for each point p € M.

Given a coordinate mapping z: U — M with x(0) = p, we have
T,M = Im(Dz(0)) and a normal vector might be defined via

1 +Dz2(0) csl
[D(0)] (—Dzl(@)) s

n(p) =
Since M is of codimension 1, n(p) is up to the sign uniquely defined.
Thus, we have a smooth mapping

n: M — St

that defines a unique normal vector field of M. Why?
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Derivative ofthe Normal Field

T

If we take the derivative of N = (N1, N?): U — R?, t > n o z(t), we obtain

Differential Push-Forward Curvature of 2D Objects

: 0w PO -0 R
# CO) =5 o) Ok
_P@[E0) ~ (1) - (#(1) + #(0)
EO
2\ atryy — =B OO + &1(1) - @) + #(0)
YV @®) ECl

Note that DN (p) is not necessarily in T,,M. Thus, we have to project it onto
T, M. To this end, let us choose {i(t)} as the base of T, M.
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Curvature of Amplicit Submanifolds m
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If F: R? — R has the regular value ¢ € R, how can we use F' in order to compute
the curvature of M at pe M?

_ VF(p)

The normal field n can be defined as n(p) = NEOIR

Since n is also defined in a neighborhood of M, we can compute its derivative
Dn: M — R?*2_ If we write the linear mapping Dn(p) with respect to the basis

B, = {VF(p), VF(p)*}, we obtain
K(p)) ’

M) - (]

Therefore, we have

) A
#(p) = tr Dn(p) = div (W)
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Curvature of 2D Objects

Differential of the Normal Mapping m
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Given a point p e M of M c R?, we have

Dn(p): T,M — n(p)Sl.

Since we have
TSt = n(p)*t = T,M,

we know that Dn(p) is an endomorphism, i.e., a linear mapping that maps the
vector space T, M onto itself.

Because dim T, M = 1, Dn(p) maps a vector v € T,M to k(p) - v.

This scalar value k(p) € R is called the curvature of M at the position p.
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Curvature

Push-Forward

Differential

Curvature of 2D Objects

Overall, we have Dn(p)[i(t)] = x(t) - &(t).

Therefore, we have

(NE#0) s i oI - 20 @) L)1
1) ()]

_ det (#(1), #(1))

EOR

K(t) =

By construction, we know that curvature is invariant with respect to

W Translation. Why?
m  Rotation. Why?
B Reparametrization. Why?
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B Cauchy, Cours d’Analyse de I'Ecole Royale Polytechnique; I.re Partie. Analyse
algébrique, 1821.
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