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4. Differential and Curvature

Differential

2 /24
3/ 24

Derivative according to Cauchy

0 xg+h

The derivative f’(x) of a function f: R — R at the position xg € R is

f/(xO) — lim f(xo + h) B f(.’lfo)

h—0 h

While this is a working mathematical definition, it is a bit difficult to extend it to arbitrary functions f: R™ — R™, since we cannot “divide by vectors”.
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Differential according to Weierstral3

f(xo) + L[h]

Given a function f: R — R and a postion x( € R, its differential D f(z() is the unique linear mapping L: R — R such that

f(xo + h) =f(xo) + L[] +r(h)

. r(h)
lim —MY
TN
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Jacobi Matrix

Let f: R™ — R" be a differentiable function and xy € R". The differential
Df(xo): R™ - R"

is a linear mapping.

Using the canonical bases {ej,...,en} for R™ and {eq,...,e,} for R", Df(xg) can be written in matrix form, the Jacobi matrix
J11 J1m
Df(xzo)[h] = J - h J = :
Jn,l Jn,m
with

J,j _ <€i7j'€j> _ <€Z,Df(x())[€j]> _ }llg% fl(xo +th) - fl(x()) _ ajfz(xo)
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Chain Rule

Let f: R™ — R™ and g: R¥ — R™ be differentiable functions. Then we have

(fog)(xo+h) =f(g9(x0) + Dg(xo)[h] + r4(h))
=(f o g)(zo) + Df(g(x0)) [Dg(wo)[h] + 74(h)] +
s (Dg(xo)[h] + r4(h))
=(fog)(xo) + Df(g(x0)) [Dg(xo)[h]] + r(h)

Thus we have

D(f o g)(xo) = Df(g(x0))oDg(z0)
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Interpretation of the Differential

Given a function f: R™ — R" and a position p € R™, the equation
fp+v)=f(p) + Df(p)lv] +r(v)

can be interpreted as following:

B p describes a point in the space on which f is defined,
B v describes the direction in which we change the point p
B D f(p)[v] describes the direction in which f changes if we change the point p in the direction v.

For vector spaces, there is no distinction between points and directions. For manifolds M, points p will be on the manifold and directions on the tangent
space 1), M.
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Push-Forward

9/ 24

Curve Representation of Tangent Vectors

Using
c: (—e,e) > M

we have

Given a point p € M of a d-dimensional submanifold M < R"™, we can represent a tangent vector v € T,M as a curve ¢ : (—e,&) — M with ¢(0) = p.
To see this, let us look at the manifold from the point of view of a coordinate mapping z: U — M with 0 € U = R¢ and z(0) = p.

Since v € T,M = Im(Dx(0)), we know that there is an h € R? such that Dz(0)[h] = v.

c(t)

x(t-h),

Dc(0) = Dz(0-h)-h =w.
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Alternative Definition of Tangent Vectors

Given a point p € M of a d-dimensional submanifold M < R"™, we define

CpM := {c: (—e,e) = M|3e > 0: ¢ is smooth and ¢(0) = p}.

The goal is to define T),M by defining an equivalence relation on C,M:

€1~ Cy = Decq(0) = Des(0),
It is easy to check that ~ satisfies reflexivity, symmetry and transitivity.
It turns out T, M = C,M/ ~, which provides us with an alternative definition for the tangent space T, .

The advantage of this rather technical definition is that for any v € T}, M we can choose a curve c € v that passes through p and vice versa, i.e., any curve
c that passes through a point p defines a tangent vector v := [c].
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Differential as Push-Forward

Given two submanifolds M and N as well as a function f: M — N. For pe M and q = f(p) € N, the differential D f(p) is the push-forward

Df(p): T,M —T,N
[c] =[f o c]

Assuming that x,,: U, — M is a coordinate mapping for p = x,(0) and z,: U; — N is a coordinate mapping for ¢ = x,(0), the push-forward definition
becomes

DG = 5 om)e-) .

where v = Dz, (0)[h] = %‘Tp(t ) h)|t:0'
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Push-Forward of Submanifolds
Given two submanifolds M < R and N < R" as well as a function f: R™ — R"™ with f(M) = N. For pe M and q = f(p) € N, Df(p) is
Df(p): T,M -T,N
lc] =[f oc]

Assuming that x,,: U, — M is a coordinate mapping for p = z,,(0) and z,: U; — N is a coordinate mapping for ¢ = z,(0), the push-forward definition
becomes

Df(p)[v] = %(:rq o:):;1 o foxp)(t-h) .

where v = Dz, (0)[h].

It is easy to show that the push-forward is a linear mapping. Excercise.
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Coordinate Interpretation

Given coordinate mappings z,: U, — M and z4: U; — N with p = 2,(0) and ¢ = f(p) = x4(0), the differential becomes

0
(x4 oa:;1 o foxy)(t-h)

DIl = 5

If we were to apply the chain rule, we would obtain

Df(p)[v] = D(xq)(z~"(g)) - D(x4")(q) - Df(p) - Dx;(0) - b

Dz, (0)h defines the tangent vector v € T),M.

D f(p) is the differential of f ignoring the submanifolds M and N.
D f(p)Dz,(0)h is the differential of f only taking M into account.
D(x;')(q) is the pseudo-inverse of D(x,)(x; ' (q)).
D(zq)(z(q)) - D(z;")(q) projects a vector onto T;N.
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How to Compute the Differential

Given two submanifolds M < R and N < R" as well as a function f: R™ — R"™ with f(M) = N. Forpe M and g = f(p) € N, Df(p) is

Df(p): T,M —T,N
[c] =[f o c]

Assuming that x,,: U, — M is a coordinate mapping for p = z,(0) and z,: U; — N is a coordinate mapping for ¢ = x,(0), the push-forward definition
becomes

Df(p)lv] = mr,n (D(f o 2p)(0)[R])

where v = Dx,(0)[h] and
nr,N(v) is the orthogonal projection of v € R” to T; V.
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What is a Matrix? (Recap)

Linear mappings are commonly represented by matrices. We want to emphasize the difference between a matrix and a linear mapping.
Given an m-dimensional R-vector space X, an n-dimensional R-vector space Y and a linear mapping L: X — Y, we can represent L by finite many scalars.

To this end, let Bx = {x1,..., 2y} and By = {y1,...,y,} bases of X and Y respectively. Then we know that for each z; € Bx we have
n
L(xj) = ) aijyi.
i=1

for some a;; € R.

We write this a;; in a matrix A and call A = Mgi (L) € R™™™ the representing matrix of L with respect to the basis Bx and By .
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Matrix of the Differential

Given two submanifolds M and N as well as a function f: M — N. For pe M and ¢ = f(p) € N, the differential Df(p): T,M — TN is a linear
mapping, but in general we do not have a canonical matrix representation.

This means that any basis B, of T, M and B, of T; N would define a different matrix Mg: (Df(p)) € R™™ with n = dim(N) and m = dim(M).

Since T, M = Im(Dz(0)), B, = {Dz(0)[e1],...,Dx(0)[en]} would be a natural way of defining a basis of 7T, A/. Nonetheless, the resulting matrix would
then depend on the coordinate mappings z,, and z, that we choose for p € M and g € N respectively.

While there is no unique matrix that describes the differential, it is important to note that the image Im D f(p) is independent of the choosen coordinate
mappings. This was used for the definition of the tangent space.
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Curvature of 2D Objects 18 / 24

Planar Curves and Normals

Given a 2D object O and its boundary, the 1D submanifold M := 0O, we like to define the normal vector n(p) for each point p € M.

Given a coordinate mapping x: U — M with x(0) = p, we have T, M = Im(Dz(0)) and a normal vector might be defined via

1 2
"0 = g (o)
Since M is of codimension 1, n(p) is up to the sign uniquely defined.
Thus, we have a smooth mapping
n: M — St

that defines a unique normal vector field of M. Why?
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Differential of the Normal Mapping

Given a point p e M of M < R?, we have

Dn(p): T,M — T,,)S".

Since we have

TopS' = n(p)* = T,M,

we know that Dn(p) is an endomorphism, i.e., a linear mapping that maps the vector space T, M onto itself.

Because dim 7T, M = 1, Dn(p) maps a vector v € T, M to k(p) - v.

This scalar value k(p) € R is called the curvature of M at the position p.
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Derivative of the Normal Field

If we take the derivative of N = (N', N?): U — R?, ¢t — n o z(t), we obtain

0 3(t) 22(t) | (t) —:J':Q(t)M

2 i @ _ G
O =F Eo EOIE
() a0 — (0 - (1) + #2(0)
EOlE
F =i (1) @ ()] + & (1) - (E (1) + ()
ZN2(g —
iV @®) @) P

Note that DN (p) is not necessarily in T, M. Thus, we have to project it onto 7, M. To this end, let us choose {z(t)} as the base of T},M.
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Curvature

Overall, we have Dn(p)[z(t)] = k(t) - ©(t).

Therefore, we have

o NOH0) s a0 - 20 6 150
Jé(2) P Jé(6) P
_det ((1), ii(1)
i (0)?

By construction, we know that curvature is invariant with respect to

W Translation. Why?
B Rotation. Why?
B Reparametrization. Why?
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Curvature of Implicit Submanifolds
If F: R? - R has the regular value ¢ € R, how can we use F in order to compute the curvature of M at pe M?

The normal field n can be defined as n(p) = Hg?g;”.

Since n is also defined in a neighborhood of M, we can compute its derivative Dn: M — R?*2_ If we write the linear mapping Dn(p) with respect to the
basis B, = {VF(p), VF(p)'}, we obtain

Mgﬁ(D"(p)) = <2 HFP)) '

Therefore, we have

k(p) = tr Dn(p) = div ( VF(p) )

IVE®)|
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