Analysis of 3D Shapes (IN2238)

Frank R. Schmidt Matthias Vestner

Summer Semester 2017

4.	Differential and Curvature	
D :	ifferential	
יט	merential	٠
	Derivative according to Cauchy	4
	Differential according to Weierstraß	ļ
	Derivative according to Cauchy	(
	Clark D. L.	
	Chain Rule	
	Interpretation of the Differential	-
Ρι	ush-Forward	į
	Curve Representation of Tangent Vectors	(
	Alternative Definition of Tangent Vectors	
	Differential as Push-Forward	
	Push-Forward of Submanifolds	,
	Coordinate Interpretation	4
	How to Compute the Differential	ļ
	What is a Matrix? (Recap)	(
	Matrix of the Differential	•

Curvature of 2D Objects	18
Planar Curves and Normals	
Differential of the Normal Mapping	
Derivative of the Normal Field	
Curvature	
Curvature of Implicit Submanifolds	
Literature	

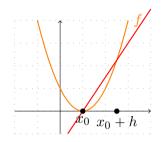
4. Differential and Curvature

2 / 24

Differential

3 / 24

Derivative according to Cauchy



The derivative $f'(x_0)$ of a function $f: \mathbb{R} \to \mathbb{R}$ at the position $x_0 \in \mathbb{R}$ is

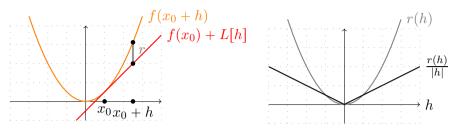
$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

While this is a working mathematical definition, it is a bit difficult to extend it to arbitrary functions $f: \mathbb{R}^n \to \mathbb{R}^m$, since we cannot "divide by vectors".

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 4 / 24

Differential according to Weierstraß



Given a function $f: \mathbb{R} \to \mathbb{R}$ and a postion $x_0 \in \mathbb{R}$, its differential $Df(x_0)$ is the unique linear mapping $L: \mathbb{R} \to \mathbb{R}$ such that

$$f(x_0 + h) = f(x_0) + L[h] + r(h)$$

$$\lim_{h \to 0} \frac{r(h)}{|h|} = 0$$

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 5 / 24

Jacobi Matrix

Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be a differentiable function and $x_0 \in \mathbb{R}^m$. The differential

$$Df(x_0) \colon \mathbb{R}^m \to \mathbb{R}^n$$

is a linear mapping.

Using the canonical bases $\{e_1,\ldots,e_m\}$ for \mathbb{R}^m and $\{e_1,\ldots,e_n\}$ for \mathbb{R}^n , $Df(x_0)$ can be written in matrix form, the **Jacobi matrix**

$$Df(x_0)[h] = J \cdot h$$

$$J = \begin{pmatrix} J_{1,1} & \cdots & J_{1,m} \\ \vdots & & \vdots \\ J_{n,1} & \cdots & J_{n,m} \end{pmatrix}$$

with

$$J_{i,j} = \langle e_i, J \cdot e_j \rangle = \langle e_i, Df(x_0)[e_j] \rangle = \lim_{h \to 0} \frac{f^i(x_0 + h \cdot e_j) - f^i(x_0)}{h} = \partial_j f^i(x_0)$$

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 6 / 24

Chain Rule

Let $f\colon \mathbb{R}^m \to \mathbb{R}^n$ and $g\colon \mathbb{R}^k \to \mathbb{R}^m$ be differentiable functions. Then we have

$$(f \circ g)(x_0 + h) = f(g(x_0) + Dg(x_0)[h] + r_g(h))$$

$$= (f \circ g)(x_0) + Df(g(x_0))[Dg(x_0)[h] + r_g(h)] +$$

$$r_f(Dg(x_0)[h] + r_g(h))$$

$$= (f \circ g)(x_0) + Df(g(x_0))[Dg(x_0)[h]] + r(h)$$

Thus we have

$$D(\mathbf{f} \circ \mathbf{g})(x_0) = \mathbf{Df}(g(x_0)) \circ \mathbf{Dg}(x_0)$$

Interpretation of the Differential

Given a function $f: \mathbb{R}^m \to \mathbb{R}^n$ and a position $p \in \mathbb{R}^m$, the equation

$$f(p+v) = f(p) + Df(p)[v] + r(v)$$

can be interpreted as following:

- \blacksquare p describes a **point** in the space on which f is defined,
- lacksquare v describes the direction in which we change the point p
- Df(p)[v] describes the **direction** in which f changes if we change the point p in the direction v.

For vector spaces, there is no distinction between points and directions. For manifolds M, points p will be on the manifold and directions on the tangent space T_pM .

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 8 / 24

Push-Forward 9 / 24

Curve Representation of Tangent Vectors

Given a point $p \in M$ of a d-dimensional submanifold $M \subset \mathbb{R}^n$, we can represent a tangent vector $v \in T_pM$ as a curve $c : (-\varepsilon, \varepsilon) \to M$ with c(0) = p.

To see this, let us look at the manifold from the point of view of a coordinate mapping $x: U \to M$ with $0 \in U \subset \mathbb{R}^d$ and x(0) = p.

Since $v \in T_pM = \operatorname{Im}(Dx(0))$, we know that there is an $h \in \mathbb{R}^d$ such that Dx(0)[h] = v.

Using

$$c \colon (-\varepsilon, \varepsilon) \to M$$

$$c(t) = x \left(t \cdot h \right),\,$$

we have

$$Dc(0) = Dx(0 \cdot h) \cdot h = v.$$

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 10 / 24

Alternative Definition of Tangent Vectors

Given a point $p \in M$ of a d-dimensional submanifold $M \subset \mathbb{R}^n$, we define

$$\mathcal{C}_pM:=\{c\colon (-\varepsilon,\varepsilon)\to M|\exists \varepsilon>0: c \text{ is smooth and } c(0)=p\}.$$

The goal is to define T_nM by defining an equivalence relation on C_nM :

$$c_1 \sim c_2$$
 : \Leftrightarrow $Dc_1(0) = Dc_2(0),$

It is easy to check that \sim satisfies reflexivity, symmetry and transitivity.

It turns out $T_pM = \mathcal{C}_pM/\sim$, which provides us with an alternative definition for the tangent space T_pM .

The advantage of this rather technical definition is that for any $v \in T_pM$ we can **choose a curve** $c \in v$ that passes through p and vice versa, *i.e.*, any curve c that passes through a point p defines a tangent vector v := [c].

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 11 / 24

Differential as Push-Forward

Given two submanifolds M and N as well as a function $f: M \to N$. For $p \in M$ and $q = f(p) \in N$, the differential Df(p) is the push-forward

$$Df(p) \colon T_pM \to T_qN$$

 $[c] \mapsto [f \circ c]$

Assuming that $x_p \colon U_p \to M$ is a coordinate mapping for $p = x_p(0)$ and $x_q \colon U_q \to N$ is a coordinate mapping for $q = x_q(0)$, the push-forward definition becomes

$$Df(p)[v] = \frac{\partial}{\partial t}(f \circ x_p)(t \cdot h)\bigg|_{t=0},$$

where $v = Dx_p(0)[h] = \frac{\partial}{\partial t}x_p(t \cdot h)\big|_{t=0}$.

Push-Forward of Submanifolds

Given two submanifolds $M \subset \mathbb{R}^m$ and $N \subset \mathbb{R}^n$ as well as a function $f \colon \mathbb{R}^m \to \mathbb{R}^n$ with f(M) = N. For $p \in M$ and $q = f(p) \in N$, Df(p) is

$$Df(p): T_pM \to T_qN$$

 $[c] \mapsto [f \circ c]$

Assuming that $x_p \colon U_p \to M$ is a coordinate mapping for $p = x_p(0)$ and $x_q \colon U_q \to N$ is a coordinate mapping for $q = x_q(0)$, the push-forward definition becomes

$$Df(p)[v] = \frac{\partial}{\partial t} (x_q \circ x_q^{-1} \circ f \circ x_p)(t \cdot h) \Big|_{t=0},$$

where $v = Dx_p(0)[h]$.

It is easy to show that the push-forward is a linear mapping. Excercise.

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 13 / 24

Coordinate Interpretation

Given coordinate mappings $x_p \colon U_p \to M$ and $x_q \colon U_q \to N$ with $p = x_p(0)$ and $q = f(p) = x_q(0)$, the differential becomes

$$Df(p)[v] = \frac{\partial}{\partial t} (x_q \circ x_q^{-1} \circ f \circ x_p)(t \cdot h) \Big|_{t=0}.$$

If we were to apply the chain rule, we would obtain

$$Df(p)[v] = \mathbf{D}(\mathbf{x_q})(x^{-1}(q)) \cdot \mathbf{D}(\mathbf{x_q^{-1}})(q) \cdot \mathbf{Df}(p) \cdot \mathbf{Dx_p}(0) \cdot \mathbf{h}$$

- $Dx_p(0)h$ defines the tangent vector $v \in T_pM$.
- Df(p) is the differential of f ignoring the submanifolds M and N.
- $Df(p)Dx_p(0)h$ is the differential of f only taking M into account.

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 14 / 24

How to Compute the Differential

Given two submanifolds $M \subset \mathbb{R}^m$ and $N \subset \mathbb{R}^n$ as well as a function $f : \mathbb{R}^m \to \mathbb{R}^n$ with f(M) = N. For $p \in M$ and $q = f(p) \in N$, Df(p) is

$$Df(p) \colon T_p M \to T_q N$$
$$[c] \mapsto [f \circ c]$$

Assuming that $x_p \colon U_p \to M$ is a coordinate mapping for $p = x_p(0)$ and $x_q \colon U_q \to N$ is a coordinate mapping for $q = x_q(0)$, the push-forward definition becomes

$$Df(p)[v] = \pi_{T_aN} \left(D(f \circ x_p)(0)[h] \right)$$

where $v=Dx_p(0)[h]$ and $\pi_{T_aN}(v)$ is the orthogonal projection of $v\in\mathbb{R}^n$ to T_qN .

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 15 / 24

What is a Matrix? (Recap)

Linear mappings are commonly represented by matrices. We want to emphasize the difference between a matrix and a linear mapping.

Given an m-dimensional \mathbb{R} -vector space X, an n-dimensional \mathbb{R} -vector space Y and a linear mapping $L\colon X\to Y$, we can represent L by finite many scalars.

To this end, let $\mathcal{B}_X = \{x_1, \dots, x_m\}$ and $\mathcal{B}_Y = \{y_1, \dots, y_n\}$ bases of X and Y respectively. Then we know that for each $x_j \in \mathcal{B}_X$ we have

$$L(x_j) = \sum_{i=1}^{n} a_{ij} y_i.$$

for some $a_{ij} \in \mathbb{R}$.

We write this a_{ij} in a matrix A and call $A = \mathcal{M}_{\mathcal{B}_Y}^{\mathcal{B}_X}(L) \in \mathbb{R}^{n \times m}$ the representing matrix of L with respect to the basis \mathcal{B}_X and \mathcal{B}_Y .

Matrix of the Differential

Given two submanifolds M and N as well as a function $f: M \to N$. For $p \in M$ and $q = f(p) \in N$, the differential $Df(p): T_pM \to T_qN$ is a linear mapping, but in general we do not have a canonical matrix representation.

This means that any basis \mathcal{B}_p of T_pM and \mathcal{B}_q of T_qN would define a different matrix $\mathcal{M}_{\mathcal{B}_q}^{\mathcal{B}_p}(Df(p)) \in \mathbb{R}^{n \times m}$ with $n = \dim(N)$ and $m = \dim(M)$.

Since $T_pM = \operatorname{Im}(Dx(0))$, $\mathcal{B}_p = \{Dx(0)[e_1], \dots, Dx(0)[e_m]\}$ would be a natural way of defining a basis of T_pM . Nonetheless, the resulting matrix would then depend on the coordinate mappings x_p and x_q that we choose for $p \in M$ and $q \in N$ respectively.

While there is no unique matrix that describes the differential, it is important to note that the image $\operatorname{Im} Df(p)$ is independent of the choosen coordinate mappings. This was used for the definition of the tangent space.

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 17 / 24

Planar Curves and Normals

Given a 2D object O and its boundary, the 1D submanifold $M := \partial O$, we like to define the normal vector n(p) for each point $p \in M$.

Given a coordinate mapping $x: U \to M$ with x(0) = p, we have $T_pM = \operatorname{Im}(Dx(0))$ and a normal vector might be defined via

$$n(p) = \frac{1}{\|Dx(0)\|} \begin{pmatrix} +Dx^2(0) \\ -Dx^1(0) \end{pmatrix} \in \mathbb{S}^1$$

Since M is of codimension 1, n(p) is up to the sign uniquely defined.

Thus, we have a smooth mapping

$$n \colon M \to \mathbb{S}^1$$

that defines a unique normal vector field of M. Why?

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 19 / 24

Differential of the Normal Mapping

Given a point $p \in M$ of $M \subset \mathbb{R}^2$, we have

$$Dn(p): T_pM \to T_{n(p)}\mathbb{S}^1.$$

Since we have

$$T_{n(p)}\mathbb{S}^1 = n(p)^{\perp} = T_p M,$$

we know that Dn(p) is an **endomorphism**, i.e., a linear mapping that maps the vector space T_pM onto itself.

Because dim $T_pM=1$, Dn(p) maps a vector $v\in T_pM$ to $\kappa(p)\cdot v$.

This scalar value $\kappa(p) \in \mathbb{R}$ is called the **curvature** of M at the position p.

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature - 20 / 24

Derivative of the Normal Field

If we take the derivative of $N=(N^1,N^2)\colon U\to \mathbb{R}^2$, $t\mapsto n\circ x(t)$, we obtain

$$\frac{\partial}{\partial t} N^{1}(x(t)) = \frac{\partial}{\partial t} \frac{\dot{x}^{2}(t)}{\|\dot{x}(t)\|} = \frac{\ddot{x}^{2}(t) \|\dot{x}(t)\| - \dot{x}^{2}(t) \frac{\ddot{x}^{1}(t) + \ddot{x}^{2}(t)}{\|\dot{x}(t)\|^{2}}}{\|\dot{x}(t)\|^{2}}$$

$$= \frac{\ddot{x}^{2}(t) \|\dot{x}(t)\|^{2} - \dot{x}^{2}(t) \cdot (\ddot{x}^{1}(t) + \ddot{x}^{2}(t))}{\|\dot{x}(t)\|^{3}}$$

$$\frac{\partial}{\partial t} N^{2}(x(t)) = \frac{-\ddot{x}^{1}(t) \|\dot{x}(t)\|^{2} + \dot{x}^{1}(t) \cdot (\ddot{x}^{1}(t) + \ddot{x}^{2}(t))}{\|\dot{x}(t)\|^{3}}$$

Note that DN(p) is not necessarily in T_pM . Thus, we have to project it onto T_pM . To this end, let us choose $\{\dot{x}(t)\}$ as the base of T_pM .

Curvature

Overall, we have $Dn(p)[\dot{x}(t)] = \kappa(t) \cdot \dot{x}(t)$.

Therefore, we have

$$\kappa(t) = \frac{\left\langle \dot{N}(t), \dot{x}(t) \right\rangle}{\left\| \dot{x}(t) \right\|^2} = \frac{\dot{x}^1(t) \ddot{x}^2(t) \left\| \dot{x}(t) \right\|^2 - \dot{x}^2(t) \ddot{x}^1(t) \left\| \dot{x}(t) \right\|^2}{\left\| \dot{x}(t) \right\|^5}$$

$$= \frac{\det \left(\dot{x}(t), \ddot{x}(t) \right)}{\left\| \dot{x}(t) \right\|^3}$$

By construction, we know that curvature is invariant with respect to

- Translation. Why?
- Rotation. Why?
- Reparametrization. Why?

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 22 / 24

Curvature of Implicit Submanifolds

If $F \colon \mathbb{R}^2 \to \mathbb{R}$ has the regular value $c \in \mathbb{R}$, how can we use F in order to compute the curvature of M at $p \in M$?

The normal field n can be defined as $n(p) = \frac{\nabla F(p)}{\|\nabla F(p)\|}.$

Since n is also defined in a neighborhood of M, we can compute its derivative $Dn \colon M \to \mathbb{R}^{2 \times 2}$. If we write the linear mapping Dn(p) with respect to the basis $\mathcal{B}_p = \{\nabla F(p), \nabla F(p)^{\perp}\}$, we obtain

$$\mathcal{M}_{\mathcal{B}_p}^{\mathcal{B}_p}(Dn(p)) = \begin{pmatrix} 0 & * \\ * & \kappa(p) \end{pmatrix}.$$

Therefore, we have

$$\kappa(p) = \operatorname{tr} Dn(p) = \operatorname{div} \left(\frac{\nabla F(p)}{\|\nabla F(p)\|} \right)$$

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 23 / 24

Literature

Differential

■ Cauchy, Cours d'Analyse de l'École Royale Polytechnique; I.re Partie. Analyse algébrique, 1821.

IN2238 - Analysis of Three-Dimensional Shapes

4. Differential and Curvature – 24 / 24