

Analysis of 3D Shapes (IN2238)

Frank R. Schmidt Matthias Vestner

Summer Semester 2017
Geometric deep learning on graphs and manifolds
Going beyond Euclidean data

June 23rd, 14-17 June 30th, 14-17 MI HS 3

Michael Bronstein

- Associate Professor USI Lugano
- Associate Professor Tel Aviv University
- Principal Engineer at the Intel Perceptual Computing Group
■ authored the first book on non-rigid shape analysis
- www.inf.usi.ch/bronstein/

IN2238 - Analysis of Three-Dimensional Shapes
8. Triangle Meshes, PL functions -2 / 27

Geometric deep learning on graphs and manifolds

Going beyond Euclidean data

June 23rd, 14-17
June 30th, 14-17 MI HS 3

In the past decade, deep learning methods have achieved unprecedented performance on a broad range of problems in various fields
from computer vision to speech recognition. However, so far research has mainly focused on developing deep learning methods for
Euclidean-structured data. However, many important applications have to deal with non-Euclidean structured data, such as graphs and manifolds. Such geometric data are becoming increasingly important in computer graphics and 3D vision, sensor networks, drug design, biomedicine, recommendation systems, and web applications. The adoption of deep learning in these fields has been lagging behind until recently, primarily since the non-Euclidean nature of objects dealt with makes the very definition of basic operations used
in deep networks rather elusive. The purpose of the proposed tutorial is to introduce the emerging field of geometric deep learning on graphs and manifolds, overview existing solutions and applications for this class of problems, as well as key difficulties and future research directions.

Test A triangle mesh \mathcal{M} is a pair $(\mathcal{V}, \mathcal{F})$ with
■ $\mathcal{V}=\left\{v_{1}, \ldots, v_{V}\right\}$ (vertices)

- $\mathcal{F}=\left\{f_{1}, \ldots, f_{F}\right\}, \quad f_{i} \in \mathcal{V} \times \mathcal{V} \times \mathcal{V}$ (triangular faces)

Geometric deep learning on graphs and manifolds

Going beyond Eucidean data

June 23rd, 14-17 June 30th, 14-17 MI HS 3

1. Introduction

2. Foundations of deep learning
3. Geometry of manifolds and graphs
4. Spectral domain geometric deep learning
5. Spatial domain geometric deep learning
6. Spatio-frequency geometric deep learning
7. Applications

IN2238 - Analysis of Three-Dimensional Shapes
8. Triangle Meshes, PL functions -2 / 27

Test A triangle mesh \mathcal{M} is a pair $(\mathcal{V}, \mathcal{F})$ with
■ $\mathcal{V}=\left\{v_{1}, \ldots, v_{V}\right\}$ (vertices)

- $\mathcal{F}=\left\{f_{1}, \ldots, f_{F}\right\}, \quad f_{i} \in \mathcal{V} \times \mathcal{V} \times \mathcal{V}$ (triangular faces)
Implicitely given
■ $\mathcal{E}=\left\{e_{1}, \ldots, e_{E}\right\}, \quad e_{i} \in \mathcal{V} \times \mathcal{V}$ (edges)

Test A triangle mesh \mathcal{M} is a pair $(\mathcal{V}, \mathcal{F})$ with

- $\mathcal{V}=\left\{v_{1}, \ldots, v_{V}\right\}$ (vertices)

■ $\mathcal{F}=\left\{f_{1}, \ldots, f_{F}\right\}, \quad f_{i} \in \mathcal{V} \times \mathcal{V} \times \mathcal{V}$ (triangular faces)
Implicitely given
■ $\mathcal{E}=\left\{e_{1}, \ldots, e_{E}\right\}, \quad e_{i} \in \mathcal{V} \times \mathcal{V}$ (edges)
Geometric embedding
■ $\mathcal{P}=\left\{p_{1}, \ldots, p_{V}\right\}, p_{i}:=p\left(v_{i}\right)=\left(\begin{array}{l}x\left(v_{i}\right) \\ y\left(v_{i}\right) \\ z\left(v_{i}\right)\end{array}\right)$

IN2238 - Analysis of Three-Dimensional Shapes
8. Triangle Meshes, PL functions - 5 / 27

Non-manifold ver-
tex
IN2238 - Analysis of Three-Dimensional Shapes

hanging vertex
Non-manifold vertex

8. Triangle Mesthes, PL functions $-6 / 27$

\# Vertex List
$\begin{array}{rrr}0 & 0 & 0 \\ 1 & 0 & 0 \\ .5 & .866 & 0 \\ .5 & -.866 & 0\end{array}$
\# Triangle List
123
142

8. Triangle Meshes, PL functions - 6 / 27
 Triangle Meshes PL Functions

Non-manifold vertex

IN2238 - Analysis of Three-Dimensional Shapes

Non-manifold edge hanging vertex

8. Triagse N

We will not be strict about the distinction of v_{i} 's and p_{i} 's.

Non-manifold ver-
tex

Non-manifold edge

IN2238 - Analysis of Three. Dimensional Shapes

\# Vertex List

0	0	0
1	0	0
.5	.866	0
.5	-.866	0

\# Triangle List
123
142

Example
Triangle Meshes PL Functions
远

\# Vertex List

0	0	0
1	0	0
.5	.866	0
.5	-.866	0

\# Triangle List
123
421

Cyclic shifts do not change the mesh

Each triangle $f_{j}=\left(v_{1}^{j}, v_{2}^{j}, v_{3}^{j}\right)$ comes with the coordinate map ($x_{j}, T_{\text {ref }}$)

$$
x_{j}(u)=v_{1}^{j}+u_{1}\left(v_{2}^{j}-v_{1}^{j}\right)+u_{2}\left(v_{3}^{j}-v_{1}^{j}\right)
$$

IN2238-Analysis of Three- Dimensional Shapes
8. Triangle Mesthes, PL functions -8 / 27

Each triangle $f_{j}=\left(v_{1}^{j}, v_{2}^{j}, v_{3}^{j}\right)$ comes with the coordinate map $\left(x_{j}, T_{\text {ref }}\right)$

$$
x_{j}(u)=v_{1}^{j}+u_{1}\left(v_{2}^{j}-v_{1}^{j}\right)+u_{2}\left(v_{3}^{j}-v_{1}^{j}\right)
$$

The famous Euler formula states an interesting relation between the number of verticec V, edges E and faces F in a closed and connected mesh:

$$
V-E+F=2(1-g)
$$

\# Vertex List

0		0	0
1	0	0	
.5	.866	0	
.5	-.866	0	
\# Triangle List			
1	2	3	
4	1	2	

Triangles have to be consistently oriented

IN2238 - Analysis of Three-Dimensional Shapes
8. Triangle Meshes, PL functions -7 / 27

Each triangle $f_{j}=\left(v_{1}^{j}, v_{2}^{j}, v_{3}^{j}\right)$ comes with the coordinate map $\left(x_{j}, T_{\text {ref }}\right)$

$$
x_{j}(u)=v_{1}^{j}+u_{1}\left(v_{2}^{j}-v_{1}^{j}\right)+u_{2}\left(v_{3}^{j}-v_{1}^{j}\right)
$$

- each coordinate map is affine

We will henceforth only consider meshes that are closed (watertight). This means they do not have a boundary and thus every edge is adjecent to exactly two faces.

IN2z38 - Analysis of Three Dimensional Shapes

The famous Euler formula states an interesting relation between the number of verticec V, edges E and faces F in a closed and connected mesh:

$$
V-E+F=2(1-g)
$$

For most practical applications the genus g is small compared to the number of vertices, faces and edges.

- each triangle is bounded by three edges

The famous Euler formula states an interesting relation between the number of verticec V, edges E and faces F in a closed and connected mesh:

$$
V-E+F=2(1-g)
$$

For most practical applications the genus g is small compared to the number of vertices, faces and edges.

- each triangle is bounded by three edges
- each edge is incident to two triangles

The famous Euler formula states an interesting relation between the number of verticec V, edges E and faces F in a closed and connected mesh:

$$
V-E+F=2(1-g)
$$

For most practical applications the genus g is small compared to the number of vertices, faces and edges.

- each triangle is bounded by three edges
- each edge is incident to two triangles
$\Rightarrow \quad$ Number of triangles is approx. twice the number of faces $F \approx 2 \mathrm{~V}$

IN2238 - Analysis of Three-Dimensional Shapes

The famous Euler formula states an interesting relation between the number of verticec V, edges E and faces F in a closed and connected mesh:

$$
V-E+F=2(1-g)
$$

For most practical applications the genus g is small compared to the number of vertices, faces and edges.

- each triangle is bounded by three edges

■ each edge is incident to two triangles
\Rightarrow Number of triangles is approx. twice the number of faces $F \approx 2 V$
\Rightarrow Number of edges is approx. three times the number of vertices $E \approx 3 \mathrm{~V}$
$\Rightarrow \quad$ The average vertex valence (number of incident edges) is 6

IN2238 - Analysis of Three-Dimensional Shapes
8. Triangle Meshes, PL functions - 10 / 27

Delaunay

- Delaunay: no point is allowed to be inside the any triangles' circumcircle - satisfied if no angle is obtuse ($>\frac{\pi}{2}$)

PL Functions

- Some simple ways wo improve mesh quality
- e.g.: if $\alpha+\beta>\pi$ flip the edge; after enough flips, mesh will be Delaunay - other ways to improve mesh (edge collapse, edge split, ...)
- We assume our meshes are nice

Let \mathcal{S} be a manifold. A function $f: \mathcal{S} \supset V \rightarrow \mathbb{R}$ is differentiable at $p \in V$ if for some parametrization $x: \mathbb{R}^{2} \subset U \rightarrow V$ the composition $f \circ x: U \rightarrow \mathbb{R}$ is differentiable.

IN2238 - Analysis of Three-Dimensional Shapes

As we discretized two dimensional manifolds by a finite number V of vertices and F of triangles we are also only able to store a finite number of values to represent a function defined on a triangle mesh.

Let \mathcal{S} be a manifold. A function $f: \mathcal{S} \supset V \rightarrow \mathbb{R}$ is differentiable at $p \in V$ if for some parametrization $x: \mathbb{R}^{2} \subset U \rightarrow V$ the composition $f \circ x: U \rightarrow \mathbb{R}$ is differentiable.
This definition does not depend on a specific parametrization.
We will soon introduce differential operators such as gradient (∇) and Laplace-Beltrami-Operator (Δ) that can be applied to differentiable functions.

As we discretized two dimensional manifolds by a finite number V of vertices and F of triangles we are also only able to store a finite number of values to represent a function defined on a triangle mesh.
Given a function $f: \mathcal{M} \rightarrow \mathbb{R}$ defined on a triangle mesh \mathcal{M}, a standard way to discretize it is to only store its values at the vertices:

$$
\left(\begin{array}{lll}
f\left(v_{1}\right) & \ldots & f\left(v_{V}\right)
\end{array}\right)^{T}=\left(\begin{array}{lll}
\mathbf{f}_{1} & \ldots & \mathbf{f}_{V}
\end{array}\right)^{T}=\mathbf{f} \in \mathbb{R}^{V}
$$

As we discretized two dimensional manifolds by a finite number V of vertices and F of triangles we are also only able to store a finite number of values to represent a function defined on a triangle mesh.
Given a function $f: \mathcal{M} \rightarrow \mathbb{R}$ defined on a triangle mesh \mathcal{M}, a standard way to discretize it is to only store its values at the vertices:

$$
\left(\begin{array}{lll}
f\left(v_{1}\right) & \ldots & f\left(v_{V}\right)
\end{array}\right)^{T}=\left(\begin{array}{lll}
\mathbf{f}_{1} & \ldots & \mathbf{f}_{V}
\end{array}\right)^{T}=\mathbf{f} \in \mathbb{R}^{V}
$$

However many different functions f may have the same discretization.

IN2238 - Analysis of Three-Dimensional Shapes

We will henceforth interpret vectors $\mathbf{f} \in \mathbb{R}^{V}$ as samplings of piecewise linear (PL) functions. The space of PL functions is a vector space. Adding (scaling) the representing vectors is equivalent to adding (scaling) the represented functions.
Notice: PL functions are not (classically) differentiable (at the vertices).

We have seen that the space of PL functions is a V-dimensional vectorspace (of functions). We should be able to find V basis functions $\left\{\psi_{1}, \ldots \psi_{V}\right\}$ that span this space.

As we discretized two dimensional manifolds by a finite number V of vertices and F of triangles we are also only able to store a finite number of values to represent a function defined on a triangle mesh.
Given a function $f: \mathcal{M} \rightarrow \mathbb{R}$ defined on a triangle mesh \mathcal{M}, a standard way to discretize it is to only store its values at the vertices:

$$
\left(\begin{array}{lll}
f\left(v_{1}\right) & \ldots & f\left(v_{V}\right)
\end{array}\right)^{T}=\left(\begin{array}{lll}
\mathbf{f}_{1} & \ldots & \mathbf{f}_{V}
\end{array}\right)^{T}=\mathbf{f} \in \mathbb{R}^{V}
$$

However many different functions f may have the same discretization.

IN2238 - Analysis of Three-Dimensional Shapes
8. Triangle Meshes, PL functions - 16 / 27

We will henceforth interpret vectors $\mathbf{f} \in \mathbb{R}^{V}$ as samplings of piecewise linear (PL) functions. The space of PL functions is a vector space. Adding (scaling) the representing vectors is equivalent to adding (scaling) the represented functions.

We have seen that the space of PL functions is a V-dimensional vectorspace (of functions).

IN2238 - Analysis of Three- Dimensional Shapes

Hat functions Triangle Meshes PL Function

We have seen that the space of PL functions is a V-dimensional vectorspace (of functions). We should be able to find V basis functions $\left\{\psi_{1}, \ldots \psi_{V}\right\}$ that span this space. A standard choice are the so called hat functions, defined via

$$
\psi_{i}\left(v_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

and their property of being PL functions (i.e.linear inside each triangle).

We have seen that the space of PL functions is a V-dimensional vectorspace (of functions). We should be able to find V basis functions $\left\{\psi_{1}, \ldots \psi_{V}\right\}$ that span this space. A standard choice are the so called hat functions, defined via

$$
\psi_{i}\left(v_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

and their property of being PL functions (i.e.linear inside each triangle).

We have seen that the space of PL functions is a V-dimensional vectorspace (of functions). We should be able to find V basis functions $\left\{\psi_{1}, \ldots \psi_{V}\right\}$ that span this space. A standard choice are the so called hat functions, defined via

$$
\psi_{i}\left(v_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

and their property of being PL functions (i.e.linear inside each triangle).

Sampled values coincide with coefficients in this basis:

$$
f(x)=\sum_{i=1}^{V} \alpha_{i} \psi_{i}(x)
$$

IN2238-Analysis of Three Dimensional Shapes

Quitn | Hat functions |
| :--- |
| Triangle Meshes |

We have seen that the space of PL functions is a V-dimensional vectorspace (of functions). We should be able to find V basis functions $\left\{\psi_{1}, \ldots \psi_{V}\right\}$ that span this space. A standard choice are the so called hat functions, defined via

$$
\psi_{i}\left(v_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

and their property of being PL functions (i.e.linear inside each triangle).

- easy interpretation

We have seen that the space of PL functions is a V-dimensional vectorspace (of functions). We should be able to find V basis functions $\left\{\psi_{1}, \ldots \psi_{V}\right\}$ that span this space. A standard choice are the so called hat functions, defined via

$$
\psi_{i}\left(v_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

and their property of being PL functions (i.e.linear inside each triangle).

- easy interpretation
- localized support (points where the function $\neq 0) \Rightarrow$ will lead to sparse matrices
- not orthogonal

We have seen that the space of PL functions is a V-dimensional vectorspace (of functions). We should be able to find V basis functions $\left\{\psi_{1}, \ldots \psi_{V}\right\}$ that span this space. A standard choice are the so called hat functions, defined via

$$
\psi_{i}\left(v_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

and their property of being PL functions (i.e.linear inside each triangle).

IN2238 - Analysis of Three-Dimensional Shapes

We have seen that the space of PL functions is a V-dimensional vectorspace (of functions). We should be able to find V basis functions $\left\{\psi_{1}, \ldots \psi_{V}\right\}$ that span this space. A standard choice are the so called hat functions, defined via

$$
\psi_{i}\left(v_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

and their property of being PL functions (i.e.linear inside each triangle).

Sampled values coincide with coefficients in this basis:

$$
f(x)=\sum_{i=1}^{V} \alpha_{i} \psi_{i}(x)=\sum_{i=1}^{V} f\left(v_{i}\right) \psi_{i}(x)=\sum_{i=1}^{V} \mathbf{f}_{i} \psi_{i}(x)
$$

IN2238-Analysis of Three-Dimensional Shapes

We have seen that the space of PL functions is a V-dimensional vectorspace (of functions). We should be able to find V basis functions $\left\{\psi_{1}, \ldots \psi_{V}\right\}$ that span this space. A standard choice are the so called hat functions, defined via

$$
\psi_{i}\left(v_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

and their property of being PL functions (i.e.linear inside each triangle).
easy interpretation

- localized support (points where the function $\neq 0) \Rightarrow$ will lead to sparse matrices

IN2238 - Analysis of Three-Dimensional Shapes

> Scalar product
> Triangle Meshes PL Functions

Definition. Let X be a vector space. A scalar (or inner) product $\langle\cdot, \cdot\rangle$ is a mapping $X \times X \rightarrow \mathbb{R}$ satisfying

1. Symmetry:

$$
\langle x, y\rangle=\langle y, x\rangle \quad \forall x, y \in X
$$

2. Linearity:

$$
\begin{aligned}
\langle\alpha x, y\rangle & =\alpha\langle x, y\rangle \quad \forall x, y \in X, \alpha \in \mathbb{R} \\
\langle x+z, y\rangle & =\langle x, y\rangle+\langle z, y\rangle \quad \forall x, y, z \in X
\end{aligned}
$$

3. Positive definitness: Triangle Meshes PL Functions

Example 1．Every symmetric positive definit（spd）matrix $A \in \mathbb{R}^{n \times n}$ defines an inner product on the vectorspace $X=\mathbb{R}^{n}$ via

$$
\langle x, y\rangle_{A}:=x^{T} A y=\langle x, A y\rangle
$$

IN2238－Analysis of Three－Dimensional Shapes

Scalar product－examples 1

 Triangle Meshes PL FunctionsExample 1．Every symmetric positive definit（spd）matrix $A \in \mathbb{R}^{n \times n}$ defines an inner product on the vectorspace $X=\mathbb{R}^{n}$ via

$$
\langle x, y\rangle_{A}:=x^{T} A y=\langle x, A y\rangle
$$

Example 2．For $X=C^{0}\left(\mathbb{S}^{1}\right)$（a vector space of functions）we can define

$$
\begin{aligned}
\langle f, g\rangle_{L^{2}\left(\mathbb{S}^{1}\right)} & :=\int_{\mathbb{S}^{1}} f(p) g(p) d p \\
& =\int_{0}^{2 \pi} f(\cos (t), \sin (t)) g(\cos (t), \sin (t)) \sqrt{\cos ^{2}(t)+\sin ^{2}(t)} d t
\end{aligned}
$$

Example 3．Let \mathcal{M} be a manifold，then $X=C^{0}(\mathcal{M})$ can be equipped with the inner product

$$
\langle f, g\rangle_{L^{2}(\mathcal{M})}:=\int_{\mathcal{M}} f(p) g(p) d p=\ldots
$$

觡另

Scalar product－examples 2

Triangle Meshes PL Functions

Are the following expressions inner products on $X=C^{1}((a, b))$ ？
Example 4.

$$
\langle f, g\rangle=\int_{a}^{b} f^{\prime}(t) g^{\prime}(t) d t
$$

Are the following expressions inner products on $X=C^{1}((a, b))$ ？
Example 4.

$$
\langle f, g\rangle=\int_{a}^{b} f^{\prime}(t) g^{\prime}(t) d t
$$

Example 5.

$$
\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t+\int_{a}^{b} f^{\prime}(t) g^{\prime}(t) d t
$$

Let

$$
f(p)=\sum_{i=1}^{V} \mathbf{f}_{i} \psi_{i}(p) \quad g(p)=\sum_{j=1}^{V} \mathbf{g}_{j} \psi_{j}(p)
$$

be two PL functions defined on a discretized manifold \mathcal{M} ．
Making use of the linearity of integrals we observe：

$$
\begin{aligned}
\langle f, g\rangle_{L^{2}(\mathcal{M})} & =\int_{\mathcal{M}} f(p) g(p) d p \\
& =\int_{\mathcal{M}}\left(\sum_{i=1}^{V} \mathbf{f}_{i} \psi_{i}(p)\right)\left(\sum_{j=1}^{V} \mathbf{g}_{j} \psi_{j}(p)\right) d p
\end{aligned}
$$

Let

$$
f(p)=\sum_{i=1}^{V} \mathbf{f}_{i} \psi_{i}(p) \quad g(p)=\sum_{j=1}^{V} \mathbf{g}_{j} \psi_{j}(p)
$$

be two PL functions defined on a discretized manifold \mathcal{M} ．

Inner product of $P L$ functions
Triangle Meshes PL Functions

$$
f(p)=\sum_{i=1}^{V} \mathbf{f}_{i} \psi_{i}(p) \quad g(p)=\sum_{j=1}^{V} \mathbf{g}_{j} \psi_{j}(p)
$$

be two PL functions defined on a discretized manifold \mathcal{M} ．
Making use of the linearity of integrals we observe：

$$
\begin{aligned}
\langle f, g\rangle_{L^{2}(\mathcal{M})} & =\int_{\mathcal{M}} f(p) g(p) d p \\
& =\int_{\mathcal{M}}\left(\sum_{i=1}^{V} \mathbf{f}_{i} \psi_{i}(p)\right)\left(\sum_{j=1}^{V} \mathbf{g}_{j} \psi_{j}(p)\right) d p \\
& =\sum_{i=1}^{V} \sum_{j=1}^{V} \mathbf{f}_{i} \mathbf{g}_{j} \int_{\mathcal{M}} \psi_{i}(p) \psi_{j}(p) d p
\end{aligned}
$$

Example 1．Every symmetric positive definit（spd）matrix $A \in \mathbb{R}^{n \times n}$ defines an inner product on the vectorspace $X=\mathbb{R}^{n}$ via

$$
\langle x, y\rangle_{A}:=x^{T} A y=\langle x, A y\rangle
$$

Example 2．For $X=C^{0}\left(\mathbb{S}^{1}\right)$（a vector space of functions）we can define

$$
\begin{aligned}
\langle f, g\rangle_{L^{2}\left(\mathbb{S}^{1}\right)} & :=\int_{\mathbb{S}^{1}} f(p) g(p) d p \\
& =\int_{0}^{2 \pi} f(\cos (t), \sin (t)) g(\cos (t), \sin (t)) \sqrt{\cos ^{2}(t)+\sin ^{2}(t)} d t
\end{aligned}
$$

Let

$$
f(p)=\sum_{i=1}^{V} \mathbf{f}_{i} \psi_{i}(p) \quad g(p)=\sum_{j=1}^{V} \mathbf{g}_{j} \psi_{j}(p)
$$

be two PL functions defined on a discretized manifold \mathcal{M}.
Making use of the linearity of integrals we observe:

The matrix \mathbf{M} with the entries $\mathbf{M}_{i j}=\int_{\mathcal{M}} \psi_{i}(p) \psi_{j}(p)$ is called mass matrix. It is a spd matrix and therefore induces an inner product on \mathbb{R}^{V}. Notice that this is not the standard inner product:

$$
\begin{aligned}
\langle f, g\rangle_{L^{2}(\mathcal{M})} & =\langle\mathbf{f}, \mathbf{g}\rangle_{\mathbf{M}} \\
& =\sum_{i=1}^{V} \sum_{j=1}^{V} \mathbf{f}_{i} \mathbf{g}_{j} \mathbf{M}_{i j} \\
& \neq \sum_{i=1}^{V} \sum_{j=1}^{V} \mathbf{f}_{i} \mathbf{g}_{j} \\
& =\langle\mathbf{f}, \mathbf{g}\rangle
\end{aligned}
$$

IN2238 - Analysis of Three Dimensional Shapes

We will now derive expressions for the entries of the mass matrix (first in 2D).

The matrix \mathbf{M} with the entries $\mathbf{M}_{i j}=\int_{\mathcal{M}} \psi_{i}(p) \psi_{j}(p)$ is called mass matrix.

We will now derive expressions for the entries of the mass matrix (first in 2D).

We will now derive expressions for the entries of the mass matrix (first in 2D).

IN2238 - Analysis of Three. Dimensional Shapes

We will now derive expressions for the entries of the mass matrix (first in 2D).

$$
\mathbf{M}_{i j}=\int_{\mathcal{M}} \psi_{i}(p) \psi_{j}(p) d p= \begin{cases}0 & \text { if }\left(v_{i}, v_{j}\right) \notin \mathcal{E} \\ \int_{e_{i j}} \psi_{i}(p) \psi_{j}(p) d p & \text { if }\left(v_{i}, v_{j}\right) \in \mathcal{E} \\ \sum_{k \in \mathcal{N}(i)} \int_{e_{i k}} \psi_{i}^{2}(p) d p & \text { if } i=j\end{cases}
$$

arclength parametrization

$$
\int_{e_{i j}} \psi_{i}(p) \psi_{j}(p) d p=\int_{t_{i}}^{t_{j}} \psi_{i}(x(t)) \psi_{j}(x(t)) \underbrace{\|\dot{x}(t)\|}_{=1} d t
$$

IN2238 - Analysis of Three-Dimensional Shapes 8. Triangle Meshes, PL functions -25 / 27

Mass matrix $-2 \mathrm{D}, 2 / 3$	$\square \square \square \square \square$
Triangle Meshes PL Functions	$\square \square \square$

parametrization of $e_{i j}=\left(v_{i}, v_{j}\right)$ from reference interval $[0,1]$
$y_{i j}(t)=(1-t) v_{i}+t v_{j}$

IN2238 - Analysis of Three-Dimensional Shapes
Mass matrix-2D,3/3
Triangle Meshes PL Functions

$$
\mathbf{M}_{i j}=\int_{\mathcal{M}} \psi_{i}(p) \psi_{j}(p) d p= \begin{cases}0 & \text { if }\left(v_{i}, v_{j}\right) \notin \mathcal{E} \\ \frac{1}{6}\left\|e_{i j}\right\| & \text { if }\left(v_{i}, v_{j}\right) \in \mathcal{E} \\ \frac{1}{3} \sum_{k \in \mathcal{N}(i)}\left\|e_{i k}\right\| & \text { if } i=j\end{cases}
$$

In the special case where all the edges have the same length $e_{i j}=s$, the mass matrix is given by:

$$
\mathbf{M}=\frac{1}{6} s\left(\begin{array}{ccccccc}
4 & 1 & 0 & & & & 1 \\
1 & 4 & 1 & 0 & & & 0 \\
0 & 1 & 4 & 1 & 0 & & 0 \\
\vdots & & & & & & \vdots \\
0 & & & & & \ddots & 1 \\
1 & 0 & \ldots & & & 1 & 4
\end{array}\right)
$$

$$
\begin{aligned}
\int_{e_{i j}} \psi_{i}(p) \psi_{j}(p) d p & =\int_{t_{i}}^{t_{j}} \psi_{i}(x(t)) \psi_{j}(x(t)) \underbrace{\|\dot{x}(t)\|}_{=1} d t \\
& =\int_{0}^{1} \psi_{i}\left(y_{i j}(t)\right) \psi_{j}\left(y_{i j}(t)\right)\left\|\dot{y}_{i j}(t)\right\| d t
\end{aligned}
$$

IN2238-Analysis of Three-Dimensional Shapes
8. Triangle Meshes, PL functions -25 / 27

$$
\mathbf{M}_{i j}=\int_{\mathcal{M}} \psi_{i}(p) \psi_{j}(p) d p= \begin{cases}0 & \text { if }\left(v_{i}, v_{j}\right) \notin \mathcal{E} \\ \frac{1}{6}\left\|e_{i j}\right\| & \text { if }\left(v_{i}, v_{j}\right) \in \mathcal{E} \\ \frac{1}{3} \sum_{k \in \mathcal{N}(i)}\left\|e_{i k}\right\| & \text { if } i=j\end{cases}
$$

■ Polygon Mesh Processing (Botsch, Kobbelt, Pauly, Alliez, Levy)

