

Given the coordinate mapping $x: U \rightarrow M \subset \mathbb{R}^{d+1}$, the first fundamental form is defined as

$$
g: U \rightarrow \mathbb{R}^{d \times d} \quad u \mapsto D x(u)^{\top} D x(u)
$$

The matrix $g(u)$ is symmetric and positive-definite, i.e.,

$$
g(u)^{\top}=g(u) \quad\langle X, g(u) \cdot X\rangle>0 \quad \forall X \neq 0
$$

Whit Scalar Product on the Tangent Space Coordinate Transform First Fundamental Form Integration

Let us assume the coordinate map $x: U \rightarrow M$ and the first fundamental form $g: U \rightarrow \mathbb{R}^{d \times d}$.
Further, let us assume that two curves $\gamma_{1,2}:(-\varepsilon, \varepsilon) \rightarrow U$ are given in the parameter domain U that pass through the same point $\gamma_{1}(0)=u=\gamma_{2}(0)$.
Now let $X:=\gamma_{1}^{\prime}(0) \in \mathbb{R}^{d}$ and $Y:=\gamma_{2}^{\prime}(0) \in \mathbb{R}^{d}$.
The curves γ_{i} define curves $c_{i}:=x \circ \gamma_{i}$ on the manifold M and pass through the point $p=x(u) \in M$.

The curves define tangent vectors in $T_{p} M$ via

$$
v_{i}:=c_{i}^{\prime}(0)=D x(u) \cdot \gamma_{i}^{\prime}(0) \in T_{p} M \subset \mathbb{R}^{d+1}
$$

Thus, we can move the computation on the tangent space $T_{p} M$ back onto U

$$
\left\langle v_{1}, v_{2}\right\rangle=\langle D x(u) X, D x(u) Y\rangle=\langle X, Y\rangle_{g(u)}
$$

Wht Example (Cylindrical Coordinates)

Coordinate Transform First Fundamental Form Integration

A cylinder $Z=\mathbb{S}^{1} \times \mathbb{R} \subset \mathbb{R}^{3}$ can be parametrized via the following mapping

$$
\begin{aligned}
x:(0, \pi) \times \mathbb{R} & \rightarrow Z \\
(\alpha, r) & \mapsto\left(\begin{array}{c}
\cos (\alpha) \\
\sin (\alpha) \\
r
\end{array}\right)
\end{aligned}
$$

Therefore we have

$$
D x(\alpha, r)=\left(\begin{array}{cc}
-\sin (\alpha) & 0 \\
\cos (\alpha) & 0 \\
0 & 1
\end{array}\right) \quad g(\alpha, r)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

This means that there is no observable, intrinsic difference between a patch on a cylinder and a patch of the 2D space if we use this specific parametrization.
9. First Fundamental Form - 13 / 25

Example (Spherical Parametrization)

Coordinate Transform First Fundamental Form Integration

It is common to use the following parametrization for the sphere \mathbb{S}^{2} :

$$
\begin{aligned}
x:(0,2 \pi) \times(0, \pi) & \rightarrow \mathbb{S}^{2} \\
(\alpha, \beta) & \mapsto\left(\begin{array}{c}
\cos (\alpha) \sin (\beta) \\
\sin (\alpha) \sin (\beta) \\
\cos (\beta)
\end{array}\right)
\end{aligned}
$$

Therefore we have

$$
D x(\alpha, \beta)=\left(\begin{array}{cc}
-\sin (\alpha) \sin (\beta) & \cos (\alpha) \cos (\beta) \\
\cos (\alpha) \sin (\beta) & \sin (\alpha) \cos (\beta) \\
0 & -\sin (\beta)
\end{array}\right) \quad g(\alpha, r)=\left(\begin{array}{cc}
\sin (\beta)^{2} & 0 \\
0 & 1
\end{array}\right)
$$

Given the vector space V, we call $b: V \times V \rightarrow \mathbb{R}$ a scalar product if:

$$
\begin{array}{rr}
b(\cdot, X), b(X, \cdot) & \text { are linear for all } X \in V \\
b(X, Y)=b(Y, X) & \text { for all } X, Y \in V \\
b(X, X)>0 & \text { for all } X \neq 0
\end{array}
$$

Scalar products on \mathbb{R}^{n} are represented by a symmetric, pos.-definite $A \in \mathbb{R}^{n \times n}$

$$
b(X, Y):=\langle X, A \cdot Y\rangle
$$

and are denoted as $\langle X, Y\rangle_{A}$.
Therefore, the Riemannian metric can be seen as a continuously changing scalar product on the domain U and is sometimes denoted as $\langle X, Y\rangle_{g(u)}$.

IN2238 - Analysis of Three-Dimensional Shapes
9. First Fundamental Form - 10 / 25

In summary, we can measure the cosine of the angle α between $c_{1}=x \circ \gamma_{1}$ and $c_{2}=x \circ \gamma_{2}$ in means of $X=\gamma_{1}^{\prime}(0)$ and $Y=\gamma_{2}^{\prime}(0)$:

$$
\cos (\alpha)=\frac{\left\langle v_{1}, v_{2}\right\rangle}{\left\|v_{1}\right\|\left\|v_{2}\right\|}=\frac{\langle X, Y\rangle_{g(u)}}{\|X\|_{g(u)}\|Y\|_{g(u)}}
$$

Thus, we are able to measure $\cos (\alpha)$ by just looking at g. We call every quantity that can be measured in that way as intrinsic. They do not depend on the surrounding space, but only on measurements "inside" of the manifold.
A coordinate mapping $x: U \rightarrow M$ is called conformal if every angle measurement in U coincides with the angle measurement on M.

The Riemannian metric g of a conformal coordinate mapping $x: U \rightarrow M$ is the identity matrix multiplied with a scalar $r: U \rightarrow \mathbb{R}$ that depends on the location $u \in U$ of the parametrization domain.

IN2238 - Analysis of Three-Dimensional Shapes
9. First Fundamental Form - 12 / 25

We can also reparametrize \mathbb{R}^{2} itself.
Common coordinates are the polar coordinates

$$
\begin{aligned}
x:(0,2 \pi) \times \mathbb{R}_{+} & \rightarrow \mathbb{R}^{2} \\
(\alpha, r) & \mapsto\binom{r \cos (\alpha)}{r \sin (\alpha)}
\end{aligned}
$$

Therefore we have

$$
D x(\alpha, r)=\left(\begin{array}{cc}
-r \sin (\alpha) & \cos (\alpha) \\
r \cos (\alpha) & \sin (\alpha)
\end{array}\right) \quad g(\alpha, r)=\left(\begin{array}{cc}
r^{2} & 0 \\
0 & 1
\end{array}\right)
$$

For these coordinates the angle between e_{1} and e_{2} is always 90°, but the mapping is not conformal. Why?

IN2238 - Analysis of Three-Dimensional Shapes
9. First Fundamental Form - 14 / 25

0-2 Coordinate Transform First Fundamental Form Integration

In the following we want to revise the length computation of a curve.
To this end, let $x: U \rightarrow M$ be a coordinate map, $\gamma:[0 ; 1] \rightarrow U$ a curve in the parametrization domain U and

$$
c:[0 ; 1] \rightarrow M
$$

$$
c(t):=x \circ \gamma(t)
$$

the curve on the manifold M whose length we like to measure.
The length of c can be computed via

$$
\text { length }(c)=\int_{0}^{1}\|\dot{c}(t)\| \mathrm{dt}=\int_{0}^{1}\|D x(\gamma(t)) \cdot \dot{\gamma}(t)\| \mathrm{dt}=\int_{0}^{1}\|\dot{\gamma}(t)\|_{g(\gamma(t))} \mathrm{dt}
$$

We can express length (c) with γ as long as we take the Riemannian metric g into account. Thus, length (c) is an intrisic quantity of M.

If a function $f:[a, b] \rightarrow \mathbb{R}$ can be integrated, we obtain

$$
\int_{a}^{b} f(s) \mathrm{ds}=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} f\left(a+\frac{b-a}{N}\right) \cdot \frac{b-a}{N}
$$

This means in particular that there is a difference between \int_{a}^{b} and \int_{b}^{a}. This integral is called the Riemann integral.

IN2238 - Analysis of Three-Dimensional Shapes

Lebesgue proposed a different integral that does not take the order of an interval's boundary into account

$$
\int_{[a, b]} f(s) \mathrm{ds}=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} f\left(a+\frac{b-a}{N}\right) \cdot\left|\frac{b-a}{N}\right|
$$

The main idea of the Lebesgue integral is to measure the size of sets and combine this with the integral notation of Riemann.

In general, every function f that can be integrated with respect to Riemann can also be integrated with respect to Lebesgue.

The mathematical contribution of Lebesgue was that there are sets that can be measured even though they cannot be represented by a finite union of intervals. Therefore, the Lebesgue integral is a generalization of the Riemann integral.

IN2238-Analysis of Three-Dimensional Shapes

9. First Fundamental Form - 19 / 25

If $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is a C^{1} function, we obtain the following substitution rule

$$
\int_{\varphi(S)} f(s) \mathrm{ds}=\int_{S} f \circ \varphi(s) \cdot|D \varphi(s)| \mathrm{ds}
$$

with respect to any set S that can be measured. What is $|D \varphi(s)|$?
$D \varphi(s) \in \mathbb{R}^{k \times k}$ describes a linear transformation of the unit vectors e_{1}, \ldots, e_{k}.
Therefore, we have:

$$
\begin{aligned}
|D \varphi(s)| & :=\operatorname{vol}\left(D \varphi(s) e_{1}, \ldots, D \varphi(s) e_{k}\right) \\
& =|\operatorname{det}(D \varphi(s))|
\end{aligned}
$$

If we work with manifolds, we also would like to compute $|A|$ for any matrix $A \in \mathbb{R}^{k \times m}$ with $m \leqslant k$.

IN2238 - Analysis of Three-Dimensional Shapes

9. First Fundamental Form - 21 / 25

For any matrix $A \in \mathbb{R}^{k \times k}$ we can compute its volume as

$$
|A|=|\operatorname{det}(A)|
$$

Let us now assume that $A \in \mathbb{R}^{k \times m}$ is given. We can find an orthonormal extension of A, i.e.,

$$
\hat{A}=(A Q) \in \mathbb{R}^{n \times n} \quad Q \in \mathbb{R}^{k \times(k-m)} \quad Q^{\top} Q=I_{k-m}
$$

Since Q only multiplies a volume of size 1 orthogonal to A, we can define

$$
\begin{aligned}
|A|: & =|\hat{A}|=\operatorname{det}\left(\hat{A}^{\top} \cdot \hat{A}\right)^{\frac{1}{2}} \\
& =\operatorname{det}\left(\begin{array}{cc}
A^{\top} A & 0 \\
0 & I_{k-m}
\end{array}\right)^{\frac{1}{2}}=\sqrt{\operatorname{det}\left(A^{\top} A\right)}
\end{aligned}
$$

The substitution rule for integration is a consequence of the chain rule and the main theorem of calculus:

If $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{1} function, we obtain:

$$
\int_{\varphi(a)}^{\varphi(b)} f(s) \mathrm{ds}=\int_{a}^{b} f \circ \varphi(s) \cdot \varphi^{\prime}(s) \mathrm{ds}
$$

for the integral with respect to Riemann.
For the integral with respect to Lebesgue we obtain instead

$$
\int_{\varphi(S)} f(s) \mathrm{ds}=\int_{S} f \circ \varphi(s) \cdot\left|\varphi^{\prime}(s)\right| \mathrm{ds}
$$

with respect to any set S that can be measured.

IN2238 - Analysis of Three-Dimensional Shapes

Let us consider the integration problem

$$
I=\int_{\mathbb{R}} \exp \left(-s^{2}\right) \mathrm{ds}
$$

Then we have

$$
\begin{aligned}
I^{2} & =\int_{\mathbb{R}} \int_{\mathbb{R}} \exp \left(-s_{1}^{2}\right) \mathrm{ds}_{1} \exp \left(-s_{2}^{2}\right) \mathrm{ds}_{2}=\int_{\mathbb{R}^{2}} \exp \left(-\left(s_{1}^{2}+s_{2}^{2}\right)\right) \mathrm{ds} \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} \exp \left(-r^{2}\right) \cdot|r| \operatorname{drd} \varphi=\pi
\end{aligned}
$$

This means we have

$$
I=\int_{\mathbb{R}} \exp \left(-s^{2}\right) \mathrm{ds}=\sqrt{\pi}
$$

IN2238 - Analysis of Three-Dimensional Shapes
9. First Fundamental Form - 22 / 25

If $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ is a C^{1} function, we obtain the following substitution rule

$$
\int_{\varphi(S)} f(s) \mathrm{ds}=\int_{S} f \circ \varphi(s) \cdot \operatorname{det}\left(D \varphi(s)^{\top} D \varphi(s)\right)^{\frac{1}{2}} \mathrm{ds}
$$

with respect to any set S that can be measured.
Let us now assume that $x_{i}: U_{i} \rightarrow M$ is a coordinate function and $f: M \rightarrow \mathbb{R}$ is a scalar function on M. Then we obtain for $M_{i}=x\left(U_{i}\right)$

$$
\begin{aligned}
\int_{M_{i}} f(p) \mathrm{dp} & =\int_{U_{i}} f \circ x_{i}(u) \cdot \operatorname{det}\left(D x_{i}(u)^{\top} D x_{i}(u)\right)^{\frac{1}{2}} \mathrm{du} \\
& =\int_{U_{i}} f \circ x_{i}(u) \cdot \sqrt{\operatorname{det} g(u)} \mathrm{du}
\end{aligned}
$$

Therefore, integration of a scalar valued function can be done intrinsically.

We like to compute the area of a sphere of radius R by using the standard parametrization $(\alpha \in(0,2 \pi), \beta \in(0, \pi))$:

$$
x(\alpha, \beta)=\left(\begin{array}{c}
R \cos (\alpha) \sin (\beta) \\
R \sin (\alpha) \sin (\beta) \\
R \cos (\beta)
\end{array}\right) \quad g(\alpha, \beta)=\left(\begin{array}{cc}
R^{2} \sin (\beta)^{2} & 0 \\
0 & R^{2}
\end{array}\right)
$$

Then we have

$$
\begin{aligned}
\operatorname{area}\left(R \cdot \mathbb{S}^{2}\right) & =\int_{R \cdot \mathbb{S}^{2}} 1 \mathrm{ds}=\int_{0}^{2 \pi} \int_{0}^{\pi} R^{2} \sin (\beta) \mathrm{d} \beta \mathrm{~d} \alpha \\
& =\int_{0}^{2 \pi} R^{2}[\cos (0)-\cos (\pi)] \mathrm{d} \alpha=4 \pi R^{2}
\end{aligned}
$$

