
Analysis of 3D Shapes (IN2238)

Frank R. Schmidt
Matthias Vestner

Summer Semester 2017

9. First Fundamental Form

Coordinate Transform First Fundamental Form Integration

Coordinate Transform

Coordinate Transform First Fundamental Form Integration

Linear Mapping

Coordinate Transform First Fundamental Form Integration

IN2238 - Analysis of Three-Dimensional Shapes 9. First Fundamental Form – 4 / 25

Given the R-vector spaces U and V , a mapping L : U Ñ V is a linear mapping if
the following holds:

Lpu ` vq “Lpuq ` Lpvq @u, v P U

Lpλuq “λLpuq @λ P R, u P U

Is X a basis of the n-dimensional vector space U and Y a basis of the
m-dimensional vector space V , we obtain

Lpxjq “
mÿ

i“1

aijyi

A P Rmˆn is then called the representing matrix of L with respect to the bases
X and Y and we write:

MX
Y pLq “A.

Change of Linear Bases
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If we have V “ Rn and a matrix A P Rnˆn, the matrix-vector multiplication defines
a linear mapping:

L : Rn ÑRn

x ÞÑAx

Let us assume that we want to change the bases of Rn. To that end, both X and
Y can be written in matrix form and we have

MX
Y pLq “Y ´1 ¨ A ¨ X

Thus, there is a subtle difference between linear mappings L and matrices A.
A is a representation of L that also takes the specific bases into account.

We say that two matrices A and B are similar, if there exists an invertible matrix
X such that B “ X´1 ¨ A ¨ X.

Coordinate Changes
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xi

xj

x´1
j ˝ xi

x

We think of a coordinate mapping as a C1 function

xi : Ui Ñ M Ă Rd`1 with xipUiq Ă M Ui Ă Rd

where M describes a manifold of dimension d and the diffeomorphism x´1
j ˝ xi tells

us how one coordinate system can be transformed into another.

Goal: We like to measure some quantities of M directly on the domain Ui. These
quantities should be independent of a coordinate mapping xi.

Angles, Lengths and Areas
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Important geometric quantities that we like to measure are

Angles In practice, we are not so much interested in the angle α itself, but rather
in cospαq. In particular, we would like to determine whether two lines that pass
through a point p are orthogonal to one another.
In order to measure cospαq we need something like a scalar product.

Length We already saw that the length of a curve can be computed by
integration. We therefore need to translate the line integral on M Ă Rd`1 into a
line integral on the domain U Ă Rd.

Area Usually integration is considered in the context of computing the size of
certain areas. It is therefore natural to also transform a surface integral on M
into a surface integral on U .

These problems can be addressed with the so called First Fundamental Form. It
is also called the Riemannian Metric or the metrical tensor.

First Fundamental Form
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x

Given the coordinate mapping x : U Ñ M Ă Rd`1, the first fundamental form is
defined as

g : U ÑRdˆd u ÞÑDxpuqJDxpuq
The matrix gpuq is symmetric and positive-definite, i.e.,

gpuqJ “gpuq xX, gpuq ¨ Xy ą0 @X ‰ 0

Generalized Scalar Product
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Given the vector space V , we call b : V ˆ V Ñ R a scalar product if:

bp¨, Xq, bpX, ¨q are linear for all X P V

bpX,Y q “bpY,Xq for all X,Y P V

bpX,Xq ą0 for all X ‰ 0

Scalar products on Rn are represented by a symmetric, pos.-definite A P Rnˆn

bpX,Y q :“ xX,A ¨ Y y
and are denoted as xX,Y yA.

Therefore, the Riemannian metric can be seen as a continuously changing scalar
product on the domain U and is sometimes denoted as xX,Y ygpuq.

Scalar Product on the Tangent Space
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Let us assume the coordinate map x : U Ñ M and the first fundamental form
g : U Ñ Rdˆd.
Further, let us assume that two curves γ1,2 : p´ε, εq Ñ U are given in the
parameter domain U that pass through the same point γ1p0q “ u “ γ2p0q.
Now let X :“ γ1

1p0q P Rd and Y :“ γ1
2p0q P Rd.

The curves γi define curves ci :“ x ˝ γi on the manifold M and pass through the
point p “ xpuq P M .

The curves define tangent vectors in TpM via

vi :“ c1
ip0q “ Dxpuq ¨ γ1

ip0q P TpM Ă Rd`1

Thus, we can move the computation on the tangent space TpM back onto U

xv1, v2y “ xDxpuqX,DxpuqY y “ xX,Y ygpuq

Measuring Angles
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In summary, we can measure the cosine of the angle α between c1 “ x ˝ γ1 and
c2 “ x ˝ γ2 in means of X “ γ1

1p0q and Y “ γ1
2p0q:

cospαq “ xv1, v2y
}v1} }v2} “ xX,Y ygpuq

}X}gpuq }Y }gpuq

Thus, we are able to measure cospαq by just looking at g. We call every quantity
that can be measured in that way as intrinsic. They do not depend on the
surrounding space, but only on measurements “inside” of the manifold.

A coordinate mapping x : U Ñ M is called conformal if every angle measurement
in U coincides with the angle measurement on M .

The Riemannian metric g of a conformal coordinate mapping x : U Ñ M is the
identity matrix multiplied with a scalar r : U Ñ R that depends on the location
u P U of the parametrization domain.

Example (Cylindrical Coordinates)

Coordinate Transform First Fundamental Form Integration

IN2238 - Analysis of Three-Dimensional Shapes 9. First Fundamental Form – 13 / 25

A cylinder Z “ S1 ˆ R Ă R3 can be parametrized via the following mapping

x : p0, πq ˆ R ÑZ

pα, rq ÞÑ
¨
˝
cospαq
sinpαq

r

˛
‚

Therefore we have

Dxpα, rq “
¨
˝

´ sinpαq 0
cospαq 0

0 1

˛
‚ gpα, rq “

ˆ
1 0
0 1

˙

This means that there is no observable, intrinsic difference between a patch on a
cylinder and a patch of the 2D space if we use this specific parametrization.

Example (Polar Coordinates)
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We can also reparametrize R2 itself.
Common coordinates are the polar coordinates

x : p0, 2πq ˆ R` ÑR2

pα, rq ÞÑ
ˆ
r cospαq
r sinpαq

˙

Therefore we have

Dxpα, rq “
ˆ´r sinpαq cospαq

r cospαq sinpαq
˙

gpα, rq “
ˆ
r2 0
0 1

˙

For these coordinates the angle between e1 and e2 is always 90˝, but the mapping
is not conformal. Why?

Example (Spherical Parametrization)
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It is common to use the following parametrization for the sphere S2:

x : p0, 2πq ˆ p0, πq ÑS2

pα, βq ÞÑ
¨
˝
cospαq sinpβq
sinpαq sinpβq

cospβq

˛
‚

Therefore we have

Dxpα, βq “
¨
˝

´ sinpαq sinpβq cospαq cospβq
cospαq sinpβq sinpαq cospβq

0 ´ sinpβq

˛
‚ gpα, rq “

ˆ
sinpβq2 0

0 1

˙

Length Computation
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In the following we want to revise the length computation of a curve.

To this end, let x : U Ñ M be a coordinate map, γ : r0; 1s Ñ U a curve in the
parametrization domain U and

c : r0; 1s Ñ M cptq :“ x ˝ γptq
the curve on the manifold M whose length we like to measure.

The length of c can be computed via

lengthpcq “
ż 1

0
} 9cptq}dt “

ż 1

0
}Dxpγptqq ¨ 9γptq}dt “

ż 1

0
} 9γptq}gpγptqq dt

We can express lengthpcq with γ as long as we take the Riemannian metric g into
account. Thus, lengthpcq is an intrisic quantity of M .
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x

y

a b

If a function f : ra, bs Ñ R can be integrated, we obtain

ż b

a
fpsqds “ lim

NÑ8

Nÿ

i“1

f

ˆ
a ` b ´ a

N

˙
¨ b ´ a

N

This means in particular that there is a difference between
şb
a and

şa
b . This integral

is called the Riemann integral.

Integral (Lebesgue)
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Lebesgue proposed a different integral that does not take the order of an interval’s
boundary into account

ż

ra,bs
fpsqds “ lim

NÑ8

Nÿ

i“1

f

ˆ
a ` b ´ a

N

˙
¨

ˇ̌
ˇ̌b ´ a

N

ˇ̌
ˇ̌

The main idea of the Lebesgue integral is to measure the size of sets and
combine this with the integral notation of Riemann.

In general, every function f that can be integrated with respect to Riemann can
also be integrated with respect to Lebesgue.

The mathematical contribution of Lebesgue was that there are sets that can be
measured even though they cannot be represented by a finite union of intervals.
Therefore, the Lebesgue integral is a generalization of the Riemann integral.

Substitution Rule
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The substitution rule for integration is a consequence of the chain rule and the
main theorem of calculus:

If ϕ : R Ñ R is a C1 function, we obtain:

ż ϕpbq

ϕpaq
fpsqds “

ż b

a
f ˝ ϕpsq ¨ ϕ1psqds

for the integral with respect to Riemann.

For the integral with respect to Lebesgue we obtain instead
ż

ϕpSq
fpsqds “

ż

S
f ˝ ϕpsq ¨ ˇ̌

ϕ1psqˇ̌
ds

with respect to any set S that can be measured.

Substitution Rule in Higher Dimension
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If ϕ : Rk Ñ Rk is a C1 function, we obtain the following substitution rule
ż

ϕpSq
fpsqds “

ż

S
f ˝ ϕpsq ¨ |Dϕpsq|ds

with respect to any set S that can be measured. What is |Dϕpsq|?
Dϕpsq P Rkˆk describes a linear transformation of the unit vectors e1, . . . , ek.

Therefore, we have:

|Dϕpsq| :“ volpDϕpsqe1, . . . , Dϕpsqekq
“ |detpDϕpsqq|

If we work with manifolds, we also would like to compute |A| for any matrix
A P Rkˆm with m ď k.

Integral (Example)
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Let us consider the integration problem

I “
ż

R
exp

`´s2
˘
ds .

Then we have

I2 “
ż

R

ż

R
exp

`´s21
˘
ds1 exp

`´s22
˘
ds2 “

ż

R2

exp
`´ps21 ` s22q˘

ds

“
ż 2π

0

ż 8

0
expp´r2q ¨ |r|drdϕ “ π

This means we have

I “
ż

R
exp

`´s2
˘
ds “ ?

π

Volume of a Matrix
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For any matrix A P Rkˆk we can compute its volume as

|A| “ |detpAq|

Let us now assume that A P Rkˆm is given. We can find an orthonormal extension
of A, i.e.,

Â “ pA Qq P Rnˆn Q P Rkˆpk´mq QJQ “ Ik´m

Since Q only multiplies a volume of size 1 orthogonal to A, we can define

|A| :“
ˇ̌
ˇÂ

ˇ̌
ˇ “ det

´
ÂJ ¨ Â

¯ 1
2

“ det

ˆ
AJA 0
0 Ik´m

˙ 1
2 “

b
detpAJAq

Integrating on a Manifold
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If ϕ : Rk Ñ Rm is a C1 function, we obtain the following substitution rule
ż

ϕpSq
fpsqds “

ż

S
f ˝ ϕpsq ¨ det `

DϕpsqJDϕpsq˘ 1
2 ds

with respect to any set S that can be measured.

Let us now assume that xi : Ui Ñ M is a coordinate function and f : M Ñ R is a
scalar function on M . Then we obtain for Mi “ xpUiq

ż

Mi

fppqdp “
ż

Ui

f ˝ xipuq ¨ det `
DxipuqJDxipuq˘ 1

2 du

“
ż

Ui

f ˝ xipuq ¨ a
det gpuqdu

Therefore, integration of a scalar valued function can be done intrinsically.



Integral (Example)
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We like to compute the area of a sphere of radius R by using the standard
parametrization (α P p0, 2πq, β P p0, πq):

xpα, βq “
¨
˝
R cospαq sinpβq
R sinpαq sinpβq

R cospβq

˛
‚ gpα, βq “

ˆ
R2 sinpβq2 0

0 R2

˙

Then we have

areapR ¨ S2q “
ż

R¨S2
1 ds “

ż 2π

0

ż π

0
R2 sinpβqdβdα

“
ż 2π

0
R2 rcosp0q ´ cospπqsdα “ 4πR2


