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Geodesic distance
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Let M be a manifold. We define the geodesic distance between two points
x, y P M as

dMpx, yq “ inf
c

tlengthpcq|c : r0, 1s Ñ M, cp0q “ x, cp1q “ yu.

■ For the manifolds we consider (compact) there exists a min-
imizer (not nec. unique)

■ Using the first fundamental form the length of curves can
be measured in the parameter domain

■ every submanifold comes with a natural metric induced by
the first fundamental form

■ we ommit the proof that d is actually a metric

x

y

Isometries
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A mapping Φ : M Ñ N between two shapes (manifolds) is an isometry if

dMpx, yq “ dN pΦpxq,Φpyqq for all points x, y P M.

If such a mapping exists M and N are called isometric.
Many shape matching approaches assume that the shapes to be matched are
(nearly) isometric. The task then becomes to find the (almost-)isometry Φ.

Intrinsic symmetry

Isometries Eigendecompositions Rigid Alignment

IN2238 - Analysis of Three-Dimensional Shapes 10. Isometries, Rigid Alignment – 7 / 30

Most of the shapes we consider come with an intrinsic symmetry S : M Ñ M,
such that

dMpx, yq “ dMpSpxq, Spyqq, @x, y P M, S ‰ id .

As a consequence isometries are not unique. Let Φ : M Ñ N be an isometry and
S : M Ñ M be an intrinsic symmetry. Then Φ ˝ S´1 is also an isometry:

dMpx, yq “ dMpS´1pxq, S´1pyqq “ dN pΦ ˝ S´1pxq,Φ ˝ S´1pyqq

Push Forward
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We can define the differential of a map between manifolds as we did with
coordinate maps. Given a map Φ : M Ñ N the differential is a linear map
DΦp : TpM Ñ TqN which maps tangent vectors at p P M to tangent vectors at
q “ Φppq P N .



Equivalent definition
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A diffeomorphism Φ : M Ñ N is an isometry iff it preserves angles:

xv, wyTpM “ xDΦpv,DΦpwyTqN

Proof (only one direction): Let c : r0, 1s Ñ M be a shortest curve connecting
p P M and q P M: dMpp, qq “ Lpcq “ ş1

0 } 9cptq} dt. Then the curve
d “ Φ ˝ c : r0, 1s Ñ N has length

Lpdq “
ż 1

0

››››
d

dt
pΦ ˝ cptqq

››››dt “
ż 1

0

››DΦcptq 9cptqq››dt “
ż 1

0
} 9cptq} dt “ Lpcq

Since there is no shorter curve connecting Φppq and Φpqq (why?), it follows
dN pp, qq “ dN pΦppq,Φpqqq.
Reason: the length of all (not only shortest) curves are preserved.

Preserving intrinsics
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Let Φ : M Ñ N be an isometry, p P M and xM : R2 Ą U Ñ M be a coordinate
map of a neighborhood V of p. Then xN :“ Φ ˝ xM : U Ñ N is a coordinate map
of the neighborhood ΦpV q Ă N of Φppq. For the first fundamental forms
gM : U Ñ R2ˆ2, gN : U Ñ R2ˆ2 we observe:

gN puq “ xDxN puq, DxN puqy
“ xDΦxMpuqDxMpuq, DΦxMpuqDxMpuqy “ gMpuq

Thus intrinsic properties of the shapes are preserved under isometries.

Example (Cylinder)
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By choosing U “ p0, πq ˆ R, xMpα, rq “ pα, rq and xN pα, rq “
¨
˝
cospαq
sinpαq

r

˛
‚and

observing

gMpα, rq “ gN pα, rq for all pα, rq P U

we know that the stripe U of R2 and the (sliced!) cylinder are isometric.

Eigendecompositions
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Eigenvalues and -vectors
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In the next weeks (starting today) we will make a lot use of the concept of
eigenvalues and eigenvectors. Let us briefly revise the definitions and fundamental
properties of eigenvalues and -vectors.

Definition. Given a matrix A P Cnˆn. If a pair λ P C, 0 ‰ v P Cn satisfies

Av “ λv

we call v an eigenvector of A and λ its corresponding eigenvalue.

The n Eigenvalues tλ1, . . . λnu are the roots of A’s characteristic polynomial

pApλq “ detpA ´ λIq “ Πn
i“1pλ ´ λiq

The fundamental theorem of algebra guarantees that this polynomial has exactly n
roots (counted by multiplicity).

Ugly facts about eigenvectors
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Even for real matrices A P Rnˆn the spectrum (set of eigenvalues) can contain
complex values:

A “
ˆ
0 ´1
1 0

˙

pApλq “ pλ2 ` 1q “ pλ ´ iqpλ ` iq
If v is a corresponding eigenvector of λ, then also every vector w “ αv (α ‰ 0) is
an eigenvector to λ:

Aw “ Aαv “ αAv “ αλv “ λαv “ λw

If vi,vj are eigenvectors to λi “ λj then every linear combination
w “ αivi ` αjvj of them is also an eigenvector (same holds for eigenvalues with
higher multiplicity):

Aw “ Apαivi ` αjvjq “ αiAvi ` αjAvj “ αiλivi ` αjλivj “ λiw

Symmetric matrices
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Theorem. Given a symmetric matrix A P Rnˆn all its eigenvalues are real and the
corresponding eigenvectors can be chosen, such that

xvi,vjy “
#
0 i ‰ j

1 i “ j

Notice that even under the assumption of orthonormality, the choice of
eigenfunctions is not unique.

Eigendecomposition 1
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If the eigenvectors v1, . . . ,vn of A span Rn, we can decompose A as

A “ VΛV´1

with

V “
¨
˝v1 ¨ ¨ ¨ vn

˛
‚ Λ “

¨
˚̋
λ1 . . . 0
...

. . .
...

0 . . . λn

˛
‹‚

Let x “ ř
αivi “ Vα be an arbitrary vector. Then

VΛV´1x “ VΛ

¨
˚̋
α1
...
αn

˛
‹‚“ V

¨
˚̋
λ1α1
...

λnαn

˛
‹‚“

ÿ

i

αiλivi “
ÿ

i

αiAvi “ Ax

If the eigenvectors are orthonormal, we have V´1 “ VT .



SPD matrices
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A symmetric matrix A is positive definit iff all its eigenvalues are positive.
Let tviu be orthonormal eigenvectors of A and 0 ‰ x “ ř

i αivi an arbitrary
vector.
Then

xTAx “ p
ÿ

i

αiviqTAp
ÿ

j

αjvjq

“ p
ÿ

i

αiviqT p
ÿ

j

αjλjvjq

“ p
ÿ

i

ÿ

j

αiαjλjv
T
i vjq

“
ÿ

j

α2
jλj

which is positive iff all λj are positive.

Eigenvectors and optimization
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There is a fundamental relation between the eigenvectors of a spd matrix A and
the optimization problem

max xTAx s.t. xx,xy “ 1

Let tviu be orthonormal eigenvectors of A (ordered from big to small) and
x “ ř

i αivi, satisfying xx,xy “ 1. First we observe that

xx,xy “ x
ÿ

i

αivi,
ÿ

j

αjvjy “
ÿ

i

α2
i “ 1

For the objective we get:

xTAx “ p
ÿ

i

αiviqTA
ÿ

j

αjvj “
ÿ

i

α2
i λi ď λ1 “ vT

1 Av1

Thus maximizing the quadratic function is equivalent to finding the principal
eigenvector v1.

Rigid Alignment
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Euclidean isometry
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Iterative closest point
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Given two shapes X and Y find the degree of their incongruence. Compare X
and Y as subsets of the Euclidean space R3. Find the best rigid motion pR, tq - i.e.
R P R3ˆ3 : RTR “ I, t P R3 - bringing Y 1 “ RY ` t as close as possible to X:

dICPpX,Y q “ min
R,t

dpRY ` t, Xq

Minimum: extrinsic similarity of X and Y
Minimizer: best rigid alignment between X and Y
ICP is a family of algorithms differing in

■ the choice of the shape-to-shape distance d
■ the choice of the numerical minimization algorithm

Shape-to-shape distance
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The Hausdorff distance dH between two subsets X,Y Ă Z of a metric space
pZ, dZq is defined as

dHpX,Y q “ maxtsup
yPY

dZpy,Xq, sup
xPX

dZpx, Y qu

X

Y

✥✥✥
✥✥✥✥

�
�

supxPY dZpx, Y q

supyPY dZpy,Xq

Non-symmetric version: supyPY dZpy,Xq
The ”maximum”-version is sensitive to outliers. A variant is to use some kind of
average: dpX,Y q “ ş

Y d2Zpy,Xqdn.

ICP algorithm
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Given are a point cloud X “ txiu, and an either discrete or continuous Y .

■ Initialize Y
■ Until convergence

◆ Findest the best point-to-point correspondence yi “ argminyPY }xi ´ y}
◆ Minimize the misalignment between corresponding points:

pR, tq “ argminR,t

ř
i }pRxi ` tq ´ yi}2

◆ Update Y “ RY ` t

KD Tree
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To perform the nearest neighbor search it is beneficial to make use of efficient
datastructures such as k-d trees.

■ binary tree
■ each non-leaf node encodes a hyperplane
■ Construction in Opn lognq
■ Average query time Oplognq
■ Course of dimensionality: in efficient for n ă 2k



Optimal Rigid alignment 1
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For simplicity we assume that X and Y are centered at the origin:ř
i xi “ ř

yi “ 0. Thus the second term in

ÿ

i

}Rxi ´ t ´ yi}2 “
ÿ

i

}Rxi ´ yi}2 ´ 2xt,
ÿ

i

pRxi ´ yiqy ` n }t}2

vanishes and it follows t “ 0 (or in general t “ ř
i xi ´ ř

i yi).
It remains to find the orthogonal matrix R minmimizing

ÿ

i

}Rxi} ´ 2
ÿ

i

yTi Rxi `
ÿ

i

}yi}2 “
ÿ

i

}xi} ´ 2
ÿ

i

yTi Rxi `
ÿ

i

}yi}2

The first and the last term are independent of R, we thus have to maximizeř
i y

T
i Rxi.

Optimal Rigid alignment 2
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We want to maximize

ÿ

i

yTi Rxi “
ÿ

i

trpRxiy
T
i q “ trpRT

ÿ

i

yix
T
i q “ trpRTMq

If M has full rank, we can construct

S “
?
MTM U “ MS´1

where the square root of a symmetric positive definit (spd) matrix A “ VΛVT is
defined as

?
A “ V

?
ΛVT

such that it holds
?
A

T?
A “ A.

One can show that the optimal choice is R “ U.

Optimal Rigid alignment 3
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We want to maximize

ÿ

i

yTi Rxi “
ÿ

i

trpRxiy
T
i q “ trpRT

ÿ

i

yix
T
i q “ trpRTMq

If M has full rank, we can construct

S “
?
MTM U “ MS´1

such that M “ US is a decomposition of M in an orthogonal matrix U and a
positive definit matrix S, thus trpRTMq “ trpRTUSq. The orthognal matrix R
maximizing this term equals U.
proof: Let S “ ř

i λiviv
T
i (eigenvalues and eigenvectors). Then

trpRTUSq “ trpRTU
ÿ

i

λiviv
T
i q “ trp

ÿ

i

λipRTUviqT viq ď trp
ÿ

i

λiviv
T
i q

Drawbacks of ICP
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Although a very simpe algorithm, ICP relies on a good initialization.

As an alternative to ICP and/or an initializier one
could bring the shapes into a ”canonical” pose.
This canonical pose can be found using principal
component analysis (PCA).

Principal component analysis 1
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Given a pointset X “ txiuni“1 we want to align it with a rigid motion
X Ñ RpX ´ tq such that:

■ the center of mass lies at the origin
■ the direction in which the pointset expands the most should be the x1-axis and

so forth

By translating the center of mass of the point set to the origin, the first goal is
easily achieved: t “ ř

i xi
Now that the pointset is centered at the origin it re-
mains to find the orthogonal matrix R aligning it with
the axis. Assume we know the three principal com-
ponents d1, d2, d3 with which it is aligned before the

rotation, then choosing R “
¨
˝d1 d2 d3

˛
‚
T

aligns it

with the axis.

Principal component analysis 2
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We are looking for a direction d (}d} “ 1) maximizing

nÿ

i“1

xd,xiy2 “
nÿ

i“1

dTxix
T
i d

The covariance matrix ΣX is defined as ΣX “ řn
i“1 xix

T
i and is spd. So we can

rewrite the objective as

max dTΣXd

s.t. xd,dy “ 1

We have seen that this objective is maximized by the principal eigenvector of ΣX .
d2 and d3 are then the eigenvectors corresponding to second and third eigenvalue
(when ordered by magnitude).


