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Geodesic distance __lsometries
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Let M be a manifold. We define the geodesic distance between two points
[(®(z),®(y)) for all points z,y € M.

z,y) = inf{length(c) 1] = M, ¢(0) = a

For the manifolds we consider (compact) there exists a min-
imizer (not nec. unique)

Using the first fundamental form the length of curves can
be measured in the parameter domain

every submanifold comes with a natural metric induced by
the first fundamental form

we ommit the proof that d is actually a metric

If such a mapping exists M and N are called isometric.
Many shape matching approaches assume that the shapes to be matched are
(nearly) isometric. The task then becomes to find the (almost-)isometry .
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Intrinsic.symmetry Push: Forward
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Most of the shapes we consider come with an intrinsic symmetry S : M — M, We can define the differential of a map between manifolds as we did with
such that coordinate maps. Given a map ® : M — N the differential is a linear map
D%, : T,M — T,N which maps tangent vectors at p € M to tangent vectors at
dm(z,y) = dpm(S(x), S(y)), Ve,ye M, S #id. q=®(p)eN.

As a consequence isometries are not unique. Let ® : M — N be an isometry and also called push-forward
S: M — M be an intrinsic symmetry. Then ® o S~ is also an isometry:

du(z,y) = du(S™(2), 57 (y)) = da(® 0 57 (2), D 0 5™ (y))

10. Isometries,
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Equivalent definition
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A diffeomorphism ® : M — N is an isometry iff it preserves angles:

(v, W)y pq = (DPypv, D<I>pw>TqN-

Proof (only one direction): Let c: [0,1] — M be a shortest curve connecting
peMand ge M: dm(p,q) = L(c) = S(l) [¢(#)[ dt. Then the curve
d=®oc:[0,1] > N has length

L(d) = fol

Since there is no shorter curve connecting ®(p) and ®(g) (why?), it follows

dn (P, q) = dn (®(p), 2(q))-
Reason: the length of all (not only shortest) curves are preserved.

1 1
G@ocn|a= [ Ipeeen|a~ [ 1ol - Lo
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Example (Cylinder)
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Preserving intrinsics
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Let ® : M — N be an isometry, pe M and z : R2 > U — M be a coordinate
map of a neighborhood V of p. Then x5 := ®oxp: U — N is a coordinate map
of the neighborhood ®(V) = A of ®(p). For the first fundamental forms

gm U = R2*2 gur: U — R?*2 we observe:

gn(u) = (Day(u), Dan(u))

Thus intrinsic properties of the shapes are preserved under isometries.
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cos(a)
By choosing U = (0,7) x R, zaq(er,7) = (o, 7) and zpr(er, ) = | sin(a) | and
T

observing
gmlenr) = gn(a,r) forall (a,7) e U

we know that the stripe U of R? and the (sliced!) cylinder are isometric.

AT

I
LIS

ensional Shapes

Eigenvalues and -vectors
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In the next weeks (starting today) we will make a lot use of the concept of
eigenvalues and eigenvectors. Let us briefly revise the definitions and fundamental
properties of eigenvalues and -vectors.

Definition. Given a matrix A € C"*". If a pair A € C,0 # v € C" satisfies
Av =)\v
we call v an eigenvector of A and A its corresponding eigenvalue.

The n Eigenvalues {1, ...\, } are the roots of A's characteristic polynomial

pa(A) = det(A — AT) = I, (A — )

The fundamental theorem of algebra guarantees that this polynomial has exactly n
roots (counted by multiplicity).
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Symmetric matrices
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Eigendecompositions

Ugly facts:about eigenvectors

Rigid Alignment

Eigendecompositions

Isometries

Even for real matrices A € R"*" the spectrum (set of eigenvalues) can contain

complex values:
0 -1
()
pa(N) = (VP +1) = (A=A +19)

If v is a corresponding eigenvector of ), then also every vector w = av (a # 0) is
an eigenvector to \:

Aw = Aav = aAv = alv = dav = \w

If vi,v; are eigenvectors to \; = A; then every linear combination
W = o;V; + ;v of them is also an eigenvector (same holds for eigenvalues with
higher multiplicity):
Aw = A(aivi + a]'Vj) = ;Av; + OZjAVj = AV + Oz]')\iVj = \wW
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Eigendecomposition 1

Theorem. Given a symmetric matrix A € R"*™ all its eigenvalues are real and the

corresponding eigenvectors can be chosen, such that
0 i#j
1 i=j

<Vi7Vj> = {

Notice that even under the assumption of orthonormality, the choice of
eigenfunctions is not unique.
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If the eigenvectors vy, ..., v, of A span R", we can decompose A as
A=VAV!
with
o N
V = VL o Up A= ..
| | 0 o A

Let x = >} a;v; = V be an arbitrary vector. Then

(e 5] /\1041
VAV Ix=VA| : |=V

Qn, AnQip

= Zai)\ivi = ZaiAvi = Ax

If the eigenvectors are orthonormal, we have V~—1 = VT

IN2238 - Analysis of Three-Dimensional Shapes




SPD matrices
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Eigenvectors and optimization
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A symmetric matrix A is positive definit iff all its eigenvalues are positive.
Let {v;} be orthonormal eigenvectors of A and 0 # = >}, a;v; an arbitrary
vector.

Then

a" Az = (; aivi) A av;)
=2 aivnT(Z]ajAjvj)
= (Z Z aiaj;jvf vj)
N

J

which is positive iff all \; are positive.
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Rigid Alignment

Iterative closest point
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Given two shapes X and Y find the degree of their incongruence. Compare X

ReR>3:RTR =I,t € R? - bringing Y’ = RY +t as close as possible to X:

dicp(X,Y) = 111%1‘1:1 d(RY +t, X)

Minimum: extrinsic similarity of X and Y
Minimizer: best rigid alignment between X and Y
ICP is a family of algorithms differing in

B the choice of the shape-to-shape distance d
B the choice of the numerical minimization algorithm

IN2238 - Analysis of Three-Dimensional Shapes

ICP:algorithm
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and Y as subsets of the Euclidean space R?. Find the best rigid motion (R, t) - i.e.
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There is a fundamental relation between the eigenvectors of a spd matrix A and
the optimization problem

max x!Ax st x,x)=1

Let {v;} be orthonormal eigenvectors of A (ordered from big to small) and
X = >, ;v;, satisfying (x,x) = 1. First we observe that

x,%x) = <Zaivi,2ajvj> = Za? =1
i j i

For the objective we get:
xTAx = (Z a,-v,-)TAZ ;v = Za?x\i <A = V{Avl
i j i
Thus maximizing the quadratic function is equivalent to finding the principal

eigenvector v;.
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Euclidean isometry
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(X, dx) (V. dy) AN AR

Intrinsic isometry Euclidean isometry

Two different metric spaces Part of the same metric space

Shape-to-shape distance
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The Hausdorff distance dy between two subsets X,Y < Z of a metric space
(Z,dz) is defined as

dy(X,Y) = max{supdz(y, X),supdz(z,Y)}
yeY zeX

Non-symmetric version: sup,cy dz(y, X)
The "maximum" -version is sensitive to outliers. A variant is to use some kind of
average: d(X,Y) = §,, d%(y, X)dn.
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KD Tree
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Given are a point cloud X = {z;}, and an either discrete or continuous Y.

W |Initialize Y
m  Until convergence

#  Findest the best point-to-point correspondence y; = argmin,y [z; — y|
& Minimize the misalignment between corresponding points:
. 2
(R,t) = argming ¢ 3, [(Rz; +t) — ui
& UpdateY =RY +t
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To perform the nearest neighbor search it is beneficial to make use of efficient
datastructures such as k-d trees.

W binary tree

each non-leaf node encodes a hyperplane
Construction in O(nlogn)

Average query time O(logn)

Course of dimensionality: in efficient for n < 2¢
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Optimal Rigid alignment 1
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Optimal Rigid alignment 2
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For simplicity we assume that X and Y are centered at the origin:
> i = > y;i = 0. Thus the second term in

DRz —t =y = Y [Ray
i i

vanishes and it follows ¢ = 0 (or in general t = >, x; — >, i)
It remains to find the orthogonal matrix R minmimizing

—yill® = 20t ) (R — i)y + n |1

i

SRz =2y Rai + Y wil® = Y. ol — 2> ! Rai + ) |wil®

The first and the last term are independent of R, we thus have to maximize
> y’iTin'
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Optimal Rigid alignment 3
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Rigid Alignment

We want to maximize
ZyiTRzi = Ztr(inyiT) = tr(RTZyimZT) = tr(RTM)
If M has full rank, we can construct
S=vMTM U-=MS"!

where the square root of a symmetric positive definit (spd) matrix A = VAVT is
defined as

VA = VVAVT

such that it holds VA  v/A = A.
One can show that the optimal choice is R = U.
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Drawbacks: of ICP

Rigid Alignment

We want to maximize
Z%‘TRI@' = 2 tr(Rayl) = tr(RTZ yiel) = tr(RTM)

If M has full rank, we can construct
S=vMTM U=MS"!

such that M = US is a decomposition of M in an orthogonal matrix U and a
positive definit matrix S, thus tr(RTM) = tr(RTUS). The orthognal matrix R
maximizing this term equals U.

proof: Let S = 3, A\;ju;v] (eigenvalues and eigenvectors). Then

tr(RTUS) = tr(RTUZ Nivol) = tr(Z MRTUv) Ty < tr(z Awiol)
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Principal component analysis 1
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As an alternative to ICP and/or an initializier one
could bring the shapes into a "canonical” pose.
This canonical pose can be found using principal
component analysis (PCA).
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Principal component analysis 2
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Given a pointset X = {z;} ; we want to align it with a rigid motion
X — R(X —t) such that:

B the center of mass lies at the origin

B the direction in which the pointset expands the most should be the z;-axis and
so forth

By translating the center of mass of the point set to the origin, the first goal is
easily achieved: t = 3, z;
Now that the pointset is centered at the origin it re-
mains to find the orthogonal matrix R aligning it with
the axis. Assume we know the three principal com-
ponents dj,ds,ds with which it is aligned before the
b b d

rotation, then choosing R = aligns it

with the axis.
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\

We are looking for a direction d (||d|| = 1) maximizing z l‘,
1

i

n n
Z(d, xi)? = Z dTxxTd
i=1 i=1 D d

(dz)

The covariance matrix Xy is defined as Zx = > | x;x7 and is spd. So we can
rewrite the objective as

dTsxd
d,dy=1

max

s.t.

We have seen that this objective is maximized by the principal eigenvector of X x.
d2 and d3 are then the eigenvectors corresponding to second and third eigenvalue
(when ordered by magnitude).
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