Analysis of 3D Shapes (IN2238)

Frank R. Schmidt
Matthias Vestner
Summer Semester 2017

Short Course
Isometries

Geometric deep learning on graphs and manifolds

Michael Bronstein

- Associate Professor USI Lugano
- Associate Professor Tel Aviv University
- Principal Engineer at the Intel Perceptual Computing Group
■ authored the first book on non-rigid shape analysis
- www.inf.usi.ch/bronstein/

10. Isometries, Rigid Alignment

Let \mathcal{M} be a manifold. We define the geodesic distance between two points $x, y \in \mathcal{M}$ as

$$
d_{\mathcal{M}}(x, y)=\inf _{c}\{\operatorname{length}(c) \mid c:[0,1] \rightarrow \mathcal{M}, c(0)=x, c(1)=y\} .
$$

- For the manifolds we consider (compact) there exists a minimizer (not nec. unique)
- Using the first fundamental form the length of curves can be measured in the parameter domain
- every submanifold comes with a natural metric induced by the first fundamental form
- we ommit the proof that d is actually a metric

Most of the shapes we consider come with an intrinsic symmetry $S: \mathcal{M} \rightarrow \mathcal{M}$, such that

$$
d_{\mathcal{M}}(x, y)=d_{\mathcal{M}}(S(x), S(y)), \quad \forall x, y \in \mathcal{M}, S \neq \mathrm{id}
$$

As a consequence isometries are not unique. Let $\Phi: \mathcal{M} \rightarrow \mathcal{N}$ be an isometry and $S: \mathcal{M} \rightarrow \mathcal{M}$ be an intrinsic symmetry. Then $\Phi \circ S^{-1}$ is also an isometry:

$$
d_{\mathcal{M}}(x, y)=d_{\mathcal{M}}\left(S^{-1}(x), S^{-1}(y)\right)=d_{\mathcal{N}}\left(\Phi \circ S^{-1}(x), \Phi \circ S^{-1}(y)\right)
$$

A mapping $\Phi: \mathcal{M} \rightarrow \mathcal{N}$ between two shapes (manifolds) is an isometry if

$$
d_{\mathcal{M}}(x, y)=d_{\mathcal{N}}(\Phi(x), \Phi(y)) \quad \text { for all points } x, y \in \mathcal{M}
$$

If such a mapping exists \mathcal{M} and \mathcal{N} are called isometric.
Many shape matching approaches assume that the shapes to be matched are (nearly) isometric. The task then becomes to find the (almost-)isometry Φ.

IN2238 - Analysis of Three-Dimensional Shapes
10. Isometries, Rigid Alignment - 6 / 30

We can define the differential of a map between manifolds as we did with coordinate maps. Given a map $\Phi: \mathcal{M} \rightarrow \mathcal{N}$ the differential is a linear map $D \Phi_{p}: T_{p} \mathcal{M} \rightarrow T_{q} \mathcal{N}$ which maps tangent vectors at $p \in \mathcal{M}$ to tangent vectors at $q=\Phi(p) \in \mathcal{N}$.

A diffeomorphism $\Phi: \mathcal{M} \rightarrow \mathcal{N}$ is an isometry iff it preserves angles:

$$
\langle v, w\rangle_{T_{p} \mathcal{M}}=\left\langle D \Phi_{p} v, D \Phi_{p} w\right\rangle_{T_{q} \mathcal{N}}
$$

Proof (only one direction): Let $c:[0,1] \rightarrow \mathcal{M}$ be a shortest curve connecting $p \in \mathcal{M}$ and $q \in \mathcal{M}: d_{\mathcal{M}}(p, q)=L(c)=\int_{0}^{1}\|\dot{c}(t)\| d t$. Then the curve $d=\Phi \circ c:[0,1] \rightarrow \mathcal{N}$ has length

$$
\left.L(d)=\int_{0}^{1}\left\|\frac{d}{d t}(\Phi \circ c(t))\right\| d t=\int_{0}^{1} \| D \Phi_{c(t)} \dot{c}(t)\right)\left\|d t=\int_{0}^{1}\right\| \dot{c}(t) \| d t=L(c)
$$

Since there is no shorter curve connecting $\Phi(p)$ and $\Phi(q)$ (why?), it follows $d_{\mathcal{N}}(p, q)=d_{\mathcal{N}}(\Phi(p), \Phi(q))$.
Reason: the length of all (not only shortest) curves are preserved.

IN2238 - Analysis of Three-Dimensional Shapes

observing

$$
g_{\mathcal{M}}(\alpha, r)=g_{\mathcal{N}}(\alpha, r) \quad \text { for all }(\alpha, r) \in U
$$

we know that the stripe U of \mathbb{R}^{2} and the (sliced!) cylinder are isometric.

In the next weeks (starting today) we will make a lot use of the concept of eigenvalues and eigenvectors. Let us briefly revise the definitions and fundamental properties of eigenvalues and -vectors.

Definition. Given a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$. If a pair $\lambda \in \mathbb{C}, 0 \neq \mathbf{v} \in \mathbb{C}^{n}$ satisfies

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

we call \mathbf{v} an eigenvector of \mathbf{A} and λ its corresponding eigenvalue.
The n Eigenvalues $\left\{\lambda_{1}, \ldots \lambda_{n}\right\}$ are the roots of \mathbf{A} 's characteristic polynomial

$$
p_{\mathbf{A}}(\lambda)=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\Pi_{i=1}^{n}\left(\lambda-\lambda_{i}\right)
$$

The fundamental theorem of algebra guarantees that this polynomial has exactly n roots (counted by multiplicity).

IN2238 - Analysis of Three-Dimensional Shapes

10. Isometries, Rigid Alignment - 13 / 30

Theorem. Given a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ all its eigenvalues are real and the corresponding eigenvectors can be chosen, such that

$$
\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

Notice that even under the assumption of orthonormality, the choice of eigenfunctions is not unique.

Let $\Phi: \mathcal{M} \rightarrow \mathcal{N}$ be an isometry, $p \in \mathcal{M}$ and $x_{\mathcal{M}}: \mathbb{R}^{2} \supset U \rightarrow \mathcal{M}$ be a coordinate map of a neighborhood V of p. Then $x_{\mathcal{N}}:=\Phi \circ x_{\mathcal{M}}: U \rightarrow \mathcal{N}$ is a coordinate map of the neighborhood $\Phi(V) \subset \mathcal{N}$ of $\Phi(p)$. For the first fundamental forms $g_{\mathcal{M}}: U \rightarrow \mathbb{R}^{2 \times 2}, g_{\mathcal{N}}: U \rightarrow \mathbb{R}^{2 \times 2}$ we observe:

$$
\begin{aligned}
g_{\mathcal{N}}(u) & =\left\langle D x_{\mathcal{N}}(u), D x_{\mathcal{N}}(u)\right\rangle \\
& =\left\langle D \Phi_{x_{\mathcal{M}}(u)} D x_{\mathcal{M}}(u), D \Phi_{x_{\mathcal{M}}(u)} D x_{\mathcal{M}}(u)\right\rangle=g_{\mathcal{M}}(u)
\end{aligned}
$$

Thus intrinsic properties of the shapes are preserved under isometries.

IN2238 - Analysis of Three-Dimensional Shapes 10. Isometries, Rigid Alignment - 10 / 30

Even for real matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$ the spectrum (set of eigenvalues) can contain complex values:

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
p_{\mathbf{A}}(\lambda) & =\left(\lambda^{2}+1\right)=(\lambda-i)(\lambda+i)
\end{aligned}
$$

If \mathbf{v} is a corresponding eigenvector of λ, then also every vector $\mathbf{w}=\alpha \mathbf{v}(\alpha \neq 0)$ is an eigenvector to λ :

$$
\mathbf{A} \mathbf{w}=\mathbf{A} \alpha \mathbf{v}=\alpha \mathbf{A} \mathbf{v}=\alpha \lambda \mathbf{v}=\lambda \alpha \mathbf{v}=\lambda \mathbf{w}
$$

If $\mathbf{v}_{i}, \mathbf{v}_{j}$ are eigenvectors to $\lambda_{i}=\lambda_{j}$ then every linear combination $\mathbf{w}=\alpha_{i} \mathbf{v}_{i}+\alpha_{j} \mathbf{v}_{j}$ of them is also an eigenvector (same holds for eigenvalues with higher multiplicity):

$$
\mathbf{A w}=\mathbf{A}\left(\alpha_{i} \mathbf{v}_{i}+\alpha_{j} \mathbf{v}_{j}\right)=\alpha_{i} \mathbf{A} \mathbf{v}_{i}+\alpha_{j} \mathbf{A} \mathbf{v}_{j}=\alpha_{i} \lambda_{i} \mathbf{v}_{i}+\alpha_{j} \lambda_{i} \mathbf{v}_{j}=\lambda_{i} \mathbf{w}
$$

IN2z38 - Analysis of Three-Dimensional Shapes
10. Isometries, Rigid Alignment - 14 / 30

- Witn

Eigendecomposition 1
 Isometries Eigendecompositions Rigid Alignment

If the eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of A span \mathbb{R}^{n}, we can decompose \mathbf{A} as

$$
\mathbf{A}=\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}
$$

with

$$
\mathbf{V}=\left(\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right) \quad \boldsymbol{\Lambda}=\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{n}
\end{array}\right)
$$

Let $\mathbf{x}=\sum \alpha_{i} \mathbf{v}_{i}=\mathbf{V} \alpha$ be an arbitrary vector. Then

$$
\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1} \mathbf{x}=\mathbf{V} \boldsymbol{\Lambda}\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\mathbf{V}\left(\begin{array}{c}
\lambda_{1} \alpha_{1} \\
\vdots \\
\lambda_{n} \alpha_{n}
\end{array}\right)=\sum_{i} \alpha_{i} \lambda_{i} \mathbf{v}_{i}=\sum_{i} \alpha_{i} \mathbf{A} \mathbf{v}_{i}=\mathbf{A} \mathbf{x}
$$

If the eigenvectors are orthonormal, we have $\mathbf{V}^{-1}=\mathbf{V}^{T}$.

A symmetric matrix \mathbf{A} is positive definit iff all its eigenvalues are positive. Let $\left\{v_{i}\right\}$ be orthonormal eigenvectors of \mathbf{A} and $0 \neq x=\sum_{i} \alpha_{i} \mathbf{v}_{i}$ an arbitrary vector.
Then

$$
\begin{aligned}
x^{T} \mathbf{A} x & =\left(\sum_{i} \alpha_{i} \mathbf{v}_{i}\right)^{T} \mathbf{A}\left(\sum_{j} \alpha_{j} \mathbf{v}_{j}\right) \\
& =\left(\sum_{i} \alpha_{i} \mathbf{v}_{i}\right)^{T}\left(\sum_{j} \alpha_{j} \lambda_{j} \mathbf{v}_{j}\right) \\
& =\left(\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \lambda_{j} \mathbf{v}_{i}^{T} \mathbf{v}_{j}\right) \\
& =\sum_{j} \alpha_{j}^{2} \lambda_{j}
\end{aligned}
$$

which is positive iff all λ_{j} are positive.

IN2238 - Analysis of Three-Dimensional Shapes

10. Isometries, Rigid Alignment - 17 / 30

Rigid Alignment

Given two shapes X and Y find the degree of their incongruence. Compare X and Y as subsets of the Euclidean space \mathbb{R}^{3}. Find the best rigid motion (\mathbf{R}, \mathbf{t}) - i.e. $\mathbf{R} \in \mathbb{R}^{3 \times 3}: \mathbf{R}^{T} \mathbf{R}=I, \mathbf{t} \in \mathbb{R}^{3}$ - bringing $Y^{\prime}=\mathbf{R} Y+t$ as close as possible to X :

$$
d_{\mathrm{ICP}}(X, Y)=\min _{\mathbf{R}, \mathbf{t}} d(\mathbf{R} Y+\mathbf{t}, X)
$$

Minimum: extrinsic similarity of X and Y
Minimizer: best rigid alignment between X and Y
ICP is a family of algorithms differing in
■ the choice of the shape-to-shape distance d

- the choice of the numerical minimization algorithm

IN2238 - Analysis of Three-Dimensional Shapes

10. Isometries, Rigid Alignment - 21 / 30

Given are a point cloud $X=\left\{x_{i}\right\}$, and an either discrete or continuous Y.

- Initialize Y
- Until convergence
- Findest the best point-to-point correspondence $y_{i}=\operatorname{argmin}_{y \in Y}\left\|x_{i}-y\right\|$
- Minimize the misalignment between corresponding points:
$(\mathbf{R}, \mathbf{t})=\operatorname{argmin}_{\mathbf{R}, \mathbf{t}} \sum_{i}\left\|\left(R x_{i}+t\right)-y_{i}\right\|^{2}$
- Update $Y=\mathbf{R} Y+\mathbf{t}$

There is a fundamental relation between the eigenvectors of a spd matrix \mathbf{A} and the optimization problem

$$
\max \quad \mathbf{x}^{T} \mathbf{A} \mathbf{x} \quad \text { s.t. }\langle\mathbf{x}, \mathbf{x}\rangle=1
$$

Let $\left\{\mathbf{v}_{i}\right\}$ be orthonormal eigenvectors of \mathbf{A} (ordered from big to small) and $\mathbf{x}=\sum_{i} \alpha_{i} \mathbf{v}_{i}$, satisfying $\langle\mathbf{x}, \mathbf{x}\rangle=1$. First we observe that

$$
\langle\mathbf{x}, \mathbf{x}\rangle=\left\langle\sum_{i} \alpha_{i} \mathbf{v}_{i}, \sum_{j} \alpha_{j} \mathbf{v}_{j}\right\rangle=\sum_{i} \alpha_{i}^{2}=1
$$

For the objective we get:

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\left(\sum_{i} \alpha_{i} \mathbf{v}_{i}\right)^{T} A \sum_{j} \alpha_{j} \mathbf{v}_{j}=\sum_{i} \alpha_{i}^{2} \lambda_{i} \leqslant \lambda_{1}=\mathbf{v}_{1}^{T} \mathbf{A} \mathbf{v}_{1}
$$

Thus maximizing the quadratic function is equivalent to finding the principal eigenvector \mathbf{v}_{1}.
IN2238 - Analysis of Three-Dimensional Shapes
10. Isometries, Rigid Alignment - 18 / 30

IN2238 - Analysis of Three-Dimensional Shapes
10. Isometries, Rigid Alignment - 20 / 30

The Hausdorff distance d_{H} between two subsets $X, Y \subset Z$ of a metric space $\left(Z, d_{Z}\right)$ is defined as

$$
d_{H}(X, Y)=\max \left\{\sup _{y \in Y} d_{Z}(y, X), \sup _{x \in X} d_{Z}(x, Y)\right\}
$$

Non-symmetric version: $\sup _{y \in Y} d_{Z}(y, X)$
The "maximum"-version is sensitive to outliers. A variant is to use some kind of average: $d(X, Y)=\int_{Y} d_{Z}^{2}(y, X) d n$.

IN2238 - Analysis of Three-Dimensional Shapes
10. Isometries, Rigid Alignment - 22 / 30

To perform the nearest neighbor search it is beneficial to make use of efficient datastructures such as k - d trees.
■ binary tree

- each non-leaf node encodes a hyperplane
- Construction in $O(n \log n)$
- Average query time $O(\log n)$
- Course of dimensionality: in efficient for $n<2^{k}$

For simplicity we assume that X and Y are centered at the origin:
$\sum_{i} x_{i}=\sum y_{i}=0$. Thus the second term in

$$
\sum_{i}\left\|\mathbf{R} x_{i}-t-y_{i}\right\|^{2}=\sum_{i}\left\|\mathbf{R} x_{i}-y_{i}\right\|^{2}-2\left\langle t, \sum_{i}\left(\mathbf{R} x_{i}-y_{i}\right)\right\rangle+n\|t\|^{2}
$$

vanishes and it follows $t=0$ (or in general $t=\sum_{i} x_{i}-\sum_{i} y_{i}$).
It remains to find the orthogonal matrix \mathbf{R} minmimizing

$$
\sum_{i}\left\|\mathbf{R} x_{i}\right\|-2 \sum_{i} y_{i}^{T} \mathbf{R} x_{i}+\sum_{i}\left\|y_{i}\right\|^{2}=\sum_{i}\left\|x_{i}\right\|-2 \sum_{i} y_{i}^{T} \mathbf{R} x_{i}+\sum_{i}\left\|y_{i}\right\|^{2}
$$

The first and the last term are independent of \mathbf{R}, we thus have to maximize $\sum_{i} y_{i}^{T} \mathbf{R} x_{i}$.

IN2238 - Analysis of Three-Dimensional Shapes

10. Isometries, Rigid Alignment - 25 / 30

We want to maximize

$$
\sum_{i} y_{i}^{T} \mathbf{R} x_{i}=\sum_{i} \operatorname{tr}\left(\mathbf{R} x_{i} y_{i}^{T}\right)=\operatorname{tr}\left(\mathbf{R}^{T} \sum_{i} y_{i} x_{i}^{T}\right)=\operatorname{tr}\left(\mathbf{R}^{T} \mathbf{M}\right)
$$

If \mathbf{M} has full rank, we can construct

$$
S=\sqrt{\mathbf{M}^{T} \mathbf{M}} \quad \mathbf{U}=\mathbf{M S}^{-1}
$$

such that $\mathbf{M}=\mathbf{U S}$ is a decomposition of \mathbf{M} in an orthogonal matrix \mathbf{U} and a positive definit matrix \mathbf{S}, thus $\operatorname{tr}\left(\mathbf{R}^{T} \mathbf{M}\right)=\operatorname{tr}\left(\mathbf{R}^{T} \mathbf{U S}\right)$. The orthognal matrix \mathbf{R} maximizing this term equals \mathbf{U}.
proof: Let $\mathbf{S}=\sum_{i} \lambda_{i} v_{i} v_{i}^{T}$ (eigenvalues and eigenvectors). Then

$$
\operatorname{tr}\left(\mathbf{R}^{T} \mathbf{U S}\right)=\operatorname{tr}\left(\mathbf{R}^{T} \mathbf{U} \sum_{i} \lambda_{i} v_{i} v_{i}^{T}\right)=\operatorname{tr}\left(\sum_{i} \lambda_{i}\left(\mathbf{R}^{T} \mathbf{U} v_{i}\right)^{T} v_{i}\right) \leqslant \operatorname{tr}\left(\sum_{i} \lambda_{i} v_{i} v_{i}^{T}\right)
$$

if:t Principal component analysis 1

Isometries Eigendecompositions Rigid Alignment

Given a pointset $X=\left\{x_{i}\right\}_{i=1}^{n}$ we want to align it with a rigid motion
$X \rightarrow \mathbf{R}(X-\mathbf{t})$ such that:

- the center of mass lies at the origin
- the direction in which the pointset expands the most should be the x_{1}-axis and so forth
By translating the center of mass of the point set to the origin, the first goal is easily achieved: $\mathbf{t}=\sum_{i} x_{i}$
Now that the pointset is centered at the origin it remains to find the orthogonal matrix \mathbf{R} aligning it with the axis. Assume we know the three principal components d_{1}, d_{2}, d_{3} with which it is aligned before the rotation, then choosing $\mathbf{R}=\left(\begin{array}{ccc}\mid & \mid & \mid \\ d_{1} & d_{2} & d_{3} \\ \mid & \mid & \mid\end{array}\right)^{T}$ aligns it with the axis.

We want to maximize

$$
\sum_{i} y_{i}^{T} \mathbf{R} x_{i}=\sum_{i} \operatorname{tr}\left(\mathbf{R} x_{i} y_{i}^{T}\right)=\operatorname{tr}\left(\mathbf{R}^{T} \sum_{i} y_{i} x_{i}^{T}\right)=\operatorname{tr}\left(\mathbf{R}^{T} \mathbf{M}\right)
$$

If M has full rank, we can construct

$$
S=\sqrt{\mathbf{M}^{T} \mathbf{M}} \quad \mathbf{U}=\mathbf{M S}^{-1}
$$

where the square root of a symmetric positive definit (spd) matrix $\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{T}$ is defined as

$$
\sqrt{\mathbf{A}}=\mathbf{V} \sqrt{\boldsymbol{\Lambda}} \mathbf{V}^{T}
$$

such that it holds $\sqrt{\mathbf{A}}^{T} \sqrt{\mathbf{A}}=\mathbf{A}$.
One can show that the optimal choice is $\mathbf{R}=\mathbf{U}$.

IN2238 - Analysis of Three-Dimensional Shapes
10. Isometries, Rigid Alignment - 26 / 30

Although a very simpe algorithm, ICP relies on a good initialization.

As an alternative to ICP and/or an initializier one could bring the shapes into a "canonical" pose. This canonical pose can be found using principal component analysis (PCA).

诂:

Principal component analysis 2

Isometries Eigendecompositions Rigid Alignment

We are looking for a direction $\mathbf{d}(\|\mathbf{d}\|=1)$ maximizing

$$
\sum_{i=1}^{n}\left\langle\mathbf{d}, \mathbf{x}_{i}\right\rangle^{2}=\sum_{i=1}^{n} \mathbf{d}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{d}
$$

The covariance matrix $\boldsymbol{\Sigma}_{X}$ is defined as $\boldsymbol{\Sigma}_{X}=\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$ and is spd. So we can rewrite the objective as

$$
\begin{array}{cr}
\max & \mathbf{d}^{T} \boldsymbol{\Sigma}_{X} \mathbf{d} \\
\text { s.t. } & \langle\mathbf{d}, \mathbf{d}\rangle=1
\end{array}
$$

We have seen that this objective is maximized by the principal eigenvector of $\boldsymbol{\Sigma}_{X}$. d_{2} and d_{3} are then the eigenvectors corresponding to second and third eigenvalue (when ordered by magnitude).

