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Our goal is to assign each point on the source shape a corresponding point on the
target shape. Although a diffeomorphic (bijective and diff’able in both directions)
mapping is desired, most of the approaches we discuss will not even guarantee
injective mappings (remember nearest neighbors from ICP). Eventually we deal
with discretized shapes, mostly triangular meshes. The correspondence will then be
a mapping between the vertices.
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A mapping Φ : M Ñ N between two shapes (manifolds) is an isometry if

dMpx, yq “ dN pΦpxq,Φpyqq for all points x, y P M.

If such a mapping exists M and N are called isometric. Many shape matching
approaches assume that the shapes to be matched are (nearly) isometric. The task
then becomes to find the (almost-)isometry Φ.

Euclidean isometry
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Last week we have seen two methods (ICP and PCA) that can be used to find a
correspondence between shapes that are isometric with respect to the Euclidean
metric (rigid alignment).
Today we discuss a way to transform the more difficult problem of intrinsic
isometries into a rigid alignment problem.

Canonical forms
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The main idea is to transform the two shapes to be matched into canonical forms
such that the two canonical forms are isometric with respect to the euclidean
metric.

Isometric embedding
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The immediate approach for isometric shapes is to find mappings X Ñ Rk that
preserve all distances.



Map makers problem
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No isometric embedding
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Conclusion: There is no isometric embedding in any euclidean space.

Multidimensinal Scaling
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If we cannot find an isometric embedding, try to find a mapping Φ : pX, dXq Ñ Rk

that distorts the distances the least.
We assume X is sampled at the vertices tv1, . . . , vV u and we have a way to
calculate the geodesic distances dXpvi, vjq.
Notation:

■ D P RV ˆV is a matrix storing all the pairwise distances on X:
Dij “ dXpvi, vjq

■ Z P RV ˆk is representing the embedding: Zj¨ “ Φpvjq
■ D̃pZq P V ˆ V is storing the euclidean distances of the mappes vertices:

D̃ijpZq “ }zi ´ zk}Rk

We want to find the matrix Z minimizing the distortion (stress)

σpZq “
Vÿ

i“1

Vÿ

j“i`1

|D̃ijpZq ´ Dij |2

In matrix notation
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One can show that

σpZq “
Vÿ

i“1

Vÿ

j“i`1

|D̃ijpZq ´ Dij |2

“ trpZTWZq ´ 2 trpZTBpZqZq `
Vÿ

i“1

Vÿ

j“i`1

D2
ij

with

W “

¨
˚̊
˚̋

V ´ 1 ´1 ´1
´1 V ´ 1 ´1
...

. . .
...

´1 ´1 . . . V ´ 1

˛
‹‹‹‚ BijpZq “

$
’&
’%

´ Dij

D̃ijpZq i ‰ j, D̃ijpZq ‰ 0

0 i ‰ j, D̃ijpZq “ 0

´ ř
k‰iBijpZq i “ j

MDS objective

Multidimensional Scaling Gradient/Dirichlet energy

IN2238 - Analysis of Three-Dimensional Shapes 11. Euclidean Embeddings – 13 / 25

We want to solve the optimization problem

argmin
ZPRnˆk

trpZTWZq ´ 2 trpZTBpZqZq `
Vÿ

i“1

Vÿ

j“i`1

D2
ij

■ last term independent of Z
■ not linear
■ not even quadratic (second term)
■ gradient descent very expensive (a lot of evaluations of stress and gradient)

and therefore slow

Iterative majorization
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Assume we can find a family of functions hpZ;Qq satisfying

■ hpQ;Qq “ σpQq
■ hpZ;Qq ě σpZq “ trpZTWZq ´ 2 trpZTBpZqZq ` řV

i“1

řV
j“i`1D

2
ij

■ hp¨;Qq is convex for all Q

hp¨, Qq are then called majorizing functions of σ.

Iterative minorization:

■ Zpk`1q “ argminZ hpZ;Qpkqq
■ Qpk`1q “ Zpkq

hpZ,Qq “ trpZTWZq ´ 2 trpZTBpQqQq `
Vÿ

i“1

Vÿ

j“i`1

D2
ij

Quadratic majorizer
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The majorizing function

hpZ,Qq “ trpZTWZq ´ 2 trpZTBpQqQq `
Vÿ

i“1

Vÿ

j“i`1

D2
ij

is quadratic in Z. A necessary condition for a minimizer is that the gradient
vanishes:

∇ZhpZ,Qq “ 2WZ ´ 2BpQqQ “ 0

The matrix W “ V ¨ I ´ 1 does not have full rank (interpretation?), so we make
use of its pseudo inverse W: “ 1

V pI ´ 1
V 1q to get

Z “ W:BpQqQ “ 1

V
pI ´ 1

V
1qBpQqQ “ 1

V
BpQqQ

SMACOF algorithm
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The SMACOF algorithm (Scaling by minimizing a convex function) thus reads as
follows:
While not converged

Zpk`1q “ 1

V
BpZpkqqZpkq

■ no guarantee of global convergence
■ decreasing stress at each iteration
■ Complexity: OpkV 2q



Complexity
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Gradient/Dirichlet energy
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Dirichlet energy
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As an alternative to MDS a popular approach to embed a shape M into a
Euclidean space is by finding functions ϕi : M Ñ R that are orthonormal
i.e.xϕi, ϕjyL2pMq “ δij and minimize the Dirichlet energy

EDpϕiq “
ż

M
x∇ϕi,∇ϕiydp “

ż

M
}∇ϕi}2 dp.

The Dirichlet energy measures how variable a function is. Let M “ p´π, πq, then

EDpcospkxqq “
ż π

´π

}∇ cospkxq}2 dx “ k2
ż π

´π

sin2pkxqdx “ k2
„
x

2
´ sinp2kxq

4k

π

´π

“ πk2

Gradient
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We have yet not defined what the gradient of a function f : M Ñ R is. We do
know gradients of functions defined on Euclidean domains. For a function
f̃ : R2 Ñ R the gradient is given by

∇f̃ “
˜ Bf̃

Bu1Bf̃
Bu1

¸

Geometric meaning of the gradient
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Geometric meaning of the gradient

■ the vector that points in the direction of steepest increase of f̃
■ its length measures the strength of increase
■ relationship with the differential of f̃ :

df̃puqp~vq “ lim
hÑ0

f̃pu ` h~vq ´ f̃puq
h

“ d

dh
f̃pu` h~vq|h“0

“ x∇f̃puq, ~vy

Riesz representation
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Dual space:
Let X be a vector space. Then we denote by

X˚ “ tψ : X Ñ R|ψ is linearu
the dual space of X.

Riesz Representation theorem:
Let pH, x¨, ¨yq be a Hilbertspace (inner product, complete). Then for each
continuous ψ P H˚ there exists a unique y P H such that

ψpxq “ xy, xy @x P H

Differential of f
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The differential of a differentiable function f : M Ñ R at a point p P M is the
linear mapping dfppq : TpM Ñ R satisfying

dfppqr~vs “ lim
tÑ0

fpcptqq ´ fppq
t

for all curves c : p´ε, εq Ñ M with cp0q “ p and 9cp0q “ ~v.
Uniqueness and Linearity
Let c1p0q “ c2p0q “ p “ xpuq and 9c1p0q “ 9c2p0q “ ~v. By defining the preimages
γiptq “ x´1 ˝ ciptq and as usual f̃ “ f ˝ x we get

dfppqrvs “ lim
tÑ0

fpciptqq ´ fppq
t

“ lim
tÑ0

f̃pγiptqq ´ f̃puq
t

“ d

dt
f̃pγiptqq

“ x∇f̃puq, 9γip0qy “ x∇f̃puq, pDxq´1 9cip0qy “ x∇f̃puq, pDxq´1~vy
This is independent of the choice of c and linear in ~v.

Gradient on manifold

Multidimensional Scaling Gradient/Dirichlet energy

IN2238 - Analysis of Three-Dimensional Shapes 11. Euclidean Embeddings – 24 / 25

Let f : M Ñ R be a differentiable function. The gradient ∇fppq at p P M is the
unique element of TpM such that

x∇fppq, ~vy “ dfppqrvs
In local coordinates
Let p “ xpuq. Given ∇f̃puq P R2 and the first fundamental form gpuq P R2ˆ2, the
coefficients α P R2 (local coordinates) of ∇f “ Dx ¨ α P TpM are given by

α “ g´1puq∇f̃puq
. Let β P R2 be the coefficients of ~v P TpM. Then

dfppqr~vs “ x∇f̃puq, βy “ xα, βygpuq “ x∇f,~vy

Notice that this in general is a different vector then ∇f̃puq!



Example
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Let M be a sphere parametrized via xpuq “
¨
˝
cospu1q cospu2q
sinpu1q cospu2q

sinpu2q

˛
‚and fppq “ x2ppq.

Then f̃puq “ sinpu1q cospu2q, ∇f̃puq “
ˆ

cospu1q cospu2q
´ sinpu1q sinpu2q

˙
and

g´1puq “
˜

1
cos2pu2q 0

0 1

¸
. For the local coordinates α of ∇f this yields

α “
˜

cospu1q
cospu2q

´ sinpu1q sinpu2q

¸


