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If we use the notation g (u) := (g(u)~1);;, we obtain
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Example: Sphere
Covariant Derivative Geodesics Second Fundamental Form

Given the coordinate map

il

cos(a) cos(a)
(a1, 2) — | sin(aq) cos(az)

2)

we obtain the Riemannian metric

and the Christoffel symbols

in(2a2) (0 1 2 _sin(2ag) (1
Tcos(a)? <1 0) (o, a0) = B} 0
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Covariant Derivative Geodesics Second Fundamental Form

12. Second Fundamental Form

Christoffel Symbols

Covariant Derivative Geodesics Second Fundamental Form

Given a coordinate map x: U — M of the n-dimensional manifold A/  R™*!, the
(intrinsic) Riemannian metric is given as

g: U — R™" gij(u) = (O (u), Oja(u

While the first derivatives d;z(u) lie in the n-dimensional vector space T,y M, the
second derivatives might contain a normal component, i.e.,
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Christoffel Symbols are Intrinsic

Covariant Derivative Geodesics Second Fundamental Form

In summary, we have

with the intrinsic Christoffel symbols

n
1 v ja)
Z ;y”[(‘igjl + 090 — 0egij)
=17

The expression >};_; I'¥.62 can also be seen as an intrinsic derivative of the

pa

vector field d;z in the direction of d;x.

This derivative is called covariant derivative V,
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Example: Christoffel Symbols

Covariant Derivative Geodesics Second Fundamental Form

Parametrization
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Example: Covariant Derivative

Covariant Derivative Geodesics Second Fundamental Form

“621?"

Extrinsic: Formulation

Covariant Derivative Geodesics Second Fundamental Form

V7Y can be formulated in a simpler manner if Y and Z can be extended to the
ambient space R**1 of M. To this end let

Y,Z: R" o R
with VM =Y and Z|M = Z.
Then, we have for every p e M
VY () = mr (DY () 2))
where
T R - T, M

is the orthogonal projection of the ambient space R™*! onto 7, M.
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Shortest Path:in Local Coordinates

Covariant Derivative Geodesics Second Fundamental Form

Given a coordinate map x: U — M of the n-dimensional manifold M, we like to
find the shortest path ~: [0,1] — U that connects two points ug, u1 € U.

The length of v is induced by the Riemannian metric g: U — R"*" via

length(y) = fo G, 9 () 3@ e

It is often easier to consider the following energy function instead

1
£0) = | [ G0.a60)-50) ]
Using the Cauchy-Schwarz inequality, we obtain

length(y) < E(7)

= const, i.e., 7y is uniformly parametrized.

with equality iff ||
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Geodesic Equation

Covariant Derivative Geodesics Second Fundamental Form

Covariant’ Derivative

Covariant Derivative Geodesics Second Fundamental Form

Given a coordinate map x: U — M of the n-dimensional manifold M < Rt
and two vector fields Y and Z represented as (p = z(u))

Z(p) = i zj(u)djz(u),

J=1

n
Y (p) = >, yi(u)diz(u)
i=1
the covariant derivative VY is a vector field that can be represented as
n
[Vo,atiz] (0) = ), Thj(w)dar(u)
k:l
[VajIY] (p) = Z Yi(u)Vo,20ix(p) + 0jyi(u)ix(u)  (product rule in Y')
i=1

[92Y1) = Y} 20)- Va2V ) (inearity in 2)
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Geodesics

Geodesics

Covariant Derivative Geodesics Second Fundamental Form

Let us select the two minimizers v* € argmin length(-) and 4 € argmin E(-).
Further we assume that 5* is a uniform re-parametrization of v*.
Then we have

length(y*) = length(y*) = E(¥*) = E() = length(¥) > length(y*).
Therefore, we know

Every minimizer of E minimizes length [length(%) = length(y*)]
[length(7) = E(%)]

[length(¥) = E(%)]

Minimizing E provides us with a uniformly parametrized shortest path between two
points. Every local minimum of E is called geodesic.

The minimum of E is the minimal length

The minimizer of E is uniformly parametrized
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Example:’ Geodesics

Covariant Derivative Geodesics Second Fundamental Form

Given two points ug,u; € U, a geodesic v = (v1,...,7): [0,1] = U that

connects these points minimizes
1 n ) )
B )= [ 3] a0 505 e
ij=1

The Euler-Lagrange equation is

0=28 = 3 das @R OP 0 - [2ng<v<tw<t>]
i=1

=

i == (3,T4)

and can therefore be presented with respect to the Christoffel symbols.

Parametrization

Meridians

Equator
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Covariant_Derivative along Curves

Covariant Derivative Geodesics Second Fundamental Form

Given a curve v: (0,L) —
would like to define

U and a vector field X along the curve ¢ = z 07, we

v

—X =V:X

dt ¢
To thisend let Y = 7" | y'0sx be a vector field on M that coincides along ¢ with
X. Further let Z = 3" | 2'0;x be a vector field that coincides along ¢ with ¢.
Then we have (p = z(u) = ¢(7))

| 6re0)],+

If we restrict this vector field to a vector field along the curve, it only depends on
X and ¢, but not on the extension of Y and Z. Thus is well defined.

n

2

VzY(p) = i u)F 2 (u) | Oy (u)

' a

12. Second

Geodesic’ curvature

Covariant Derivative Geodesics Second Fundamental Form

Geodesic Equation in Terms of the

Covariant Derivative

Covariant Derivative Geodesics Second Fundamental Form

Given a geodesic c: (0,1) — M, we have for ¢ = 3.7 | 40,z

n

[&’“ + 2 AT

] kT
ij=1

[ﬁ’“ + <#, r’w>] oz =0

The geodesic equation can therefore be written as

v

ac=0

Since %é measures how different a curve ¢ is from a geodesic we can use it to
define the geodesic curvature of a curve.

ensional Shapes

Second Fundamental For

Covariant Derivative Geodesics Second Fundamental Form

Given a curve c: (0, L) — R? parametrized by arc-length (||¢| = 1), the curvature
K(t) at ¢(t) can be computed via

det(é(t), é(t))

=P

= det(é(t), &)

Given a curve c¢: (0, L) — M in the 2D manifold M that is parametrized by
arc-length, we can compute the geodesic curvature r4(t) by replacing ¢ with %c
and obtain

g(t) = det (é(t), %é(t))

The geodesic curvature is 0 for geodesics and can therefore be understood as an
intrinsic reformulation of the classical curvature of curves.
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_Gauss Map

Covariant Derivative Geodesics Second Fundamental Form

Given a 2D manifold M < R3, we call a smooth mapping

N: M —§? VYpe M: N(p)LT,M

its Gauss map. For every 3D shape there exists such a mapping. (Why?)
If x: U — M is a coordinate mapping, we can always define a local Gauss map via

N: M —>§?
O1x(u) x dax(u)

o, _1TY) X Ca\U) _ o1
P [ora(u) x Zaw)] foru=="(p)

If M = f~1(c) is given implicitly via a function f: R3 — R, the Gauss map is

. . v
given via N(p) = [T
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Self-Adjointness:of the Shape Operator

Covariant Derivative Geodesics Second Fundamental Form

Second Fundamental Form

Shape Operator

Geodesics Second Fundamental Form

Covariant Derivative

Given a 2D manifold M < R? together with its Gauss map N: M — S?, we call
its differential the shape operator or Weingarten mapping S

Sp: TyM —Ty(,)S?
v =DN(p)[v]
Np)*

Since TN(p)S2 = =T,M, Sy: TyM — T,M is an endomorphism.

If we choose a base of T, M, we would obtain a 2 x 2 matrix, but this matrix
would depend on the chosen base. Nonetheless, the eigenvalues of these matrices
would remain the same.

The goal is to show that S), can be put in diagonal form and that both eigenvalues
are real.
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Principal .Curvatures

Covariant Derivative Geodesics Second Fundamental Form

We know (Linear Algebra) that self-adjoint endomorphisms are diagonalizable with
real eigenvalues. Therefore, we have to prove that

(1, Sp(v2)) = (Sp(v1),v2) for all v1,v0 € T,M

If v1 and vq are co-linear this is obvious. If they are not co-linear, one can find a
local coordinate map z: U — M with z(0) = p and v; = 0;z(0).
Using (N o z(u), d;z(u)) = 0 leads to

0= 01{N o z(u), G2z (u))l,_o = (Sp(v1),v2) + (N(p), O122(0))
0 = 02 (N o z(u), 12(u))l,—o = (Sp(v2),v1) + (N (p), d212(0))

which proves the self-adjointness of the shape operator.
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The two eigenvalues k1(p) and k2(p) of S, are called principal curvatures and
corresponding eigenvectors v1(p) and va(p) are called principal curvature
directions.

Note that r4(p) along the geodesic ¢; corresponding to v;(p) is 0 and the
curvature of this curve coincides with x;(p). In that sense, we can think of the
principal curvatures as natural generalizations of the planar curvature.

We can derive two other curvatures from the principal curvatures:

H(p) :M = %tr(M) (mean curvature)
K(p) :=r1(p) - K2(p) = det(M) (Gauss curvature)

given a representing matrix M of S,.
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Second Fundamental Form Shape Operator;in Local Coordinates

Covariant Derivative Geodesics Second Fundamental Form Covariant Derivative Geodesics Second Fundamental Form

Given the shape operator S,,: T,M — T,M, we can define the Second Any coordinate map x: U — M provides for a base {012(u), ..., 0px(u)} of TpM
Fundamental Form for p = 2(u). In this base, the shape operator S}, can be written as
I: T,M x T,M - R (v1,v2) — {Spv1, va)y

Sp(0ja(u)) = ZM;@J?(U)
This means, we have i=1
n This means, we have
6,-J-z = Z Ff]aka: — ]I((%I, a]I) - N n n
k=1 (05, dpx) = (Sp(02), pay = Y. (Midi, dpxy = Y griM,
and the second fundamental form can be computed via i=1 i=1

In other words the representating matrix M of S, satisfies the Weingarten

I(0sz, 0jx) = — (Dija, N). equations

M=g11
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