Analysis of 3D Shapes (IN2238)

Frank R. Schmidt Matthias Vestner

Summer Semester 2016

12. Second Fundamental Form

Covariant Derivative

Christoffel Symbols

Given a coordinate map $x: U \to M$ of the *n*-dimensional manifold $M \subset \mathbb{R}^{n+1}$, the (intrinsic) Riemannian metric is given as

$$g: U \to \mathbb{R}^{n \times n}$$
 $g_{ij}(u) = \langle \partial_i x(u), \partial_j x(u) \rangle$

While the first derivatives $\partial_i x(u)$ lie in the n-dimensional vector space $T_{x(u)}M$, the second derivatives might contain a normal component, i.e.,

$$\partial_{ij}x(u) = \sum_{k=1}^{n} \Gamma_{ij}^{k}(u)\partial_{k}x(u) + \alpha_{ij}(u)N(u)$$

The n^3 scalar functions $\Gamma^k_{ij}\colon U\to\mathbb{R}$ are called Christoffel symbols. They are symmetric in i and j, i.e., $\Gamma^k_{ij} = \Gamma^k_{ji}$. (Why?)

Christoffel Symbols and Metric

Using $\partial_i g_{j\ell}(u) = \langle \partial_{ij} x(u), \partial_\ell x(u) \rangle + \langle \partial_{i\ell} x(u), \partial_j x(u) \rangle$, we obtain

$$\begin{split} \tilde{\Gamma}_{\ell i j}(u) &:= \frac{1}{2} [\partial_{i} g_{j \ell}(u) + \partial_{j} g_{\ell i}(u) - \partial_{\ell} g_{i j}(u)] \\ &= \frac{1}{2} [\langle \partial_{i j} x(u), \partial_{\ell} x(u) \rangle + \langle \partial_{i \ell} \mathbf{x}(\mathbf{u}), \partial_{j} \mathbf{x}(\mathbf{u}) \rangle + \langle \partial_{j \ell} \mathbf{x}(\mathbf{u}), \partial_{i} \mathbf{x}(\mathbf{u}) \rangle + \\ & \langle \partial_{j i} x(u), \partial_{\ell} x(u) \rangle - \langle \partial_{\ell i} \mathbf{x}(\mathbf{u}), \partial_{j} \mathbf{x}(\mathbf{u}) \rangle - \langle \partial_{\ell j} \mathbf{x}(\mathbf{u}), \partial_{i} \mathbf{x}(\mathbf{u}) \rangle] \\ &= \langle \partial_{i j} x(u), \partial_{\ell} x(u) \rangle = \sum_{k=1}^{n} \Gamma_{i j}^{k}(u) g_{k \ell}(u) \end{split}$$

If we use the notation $g^{ij}(u) := (g(u)^{-1})_{ij}$, we obtain

$$\sum_{\ell=1}^{n} g^{k\ell}(u) \tilde{\Gamma}_{\ell i j}(u) = \sum_{k'=1}^{n} \sum_{\ell=1}^{n} g^{k\ell}(u) g_{\ell k'}(u) \Gamma_{i j}^{k'}(u) = \Gamma_{i j}^{k}(u)$$

Given the coordinate map

Christoffel Symbols are Intrinsic

In summary, we have

$$\partial_{ij}x = \sum_{k=1}^{n} \Gamma_{ij}^{k} \partial_{k}x + \alpha_{ij}N$$

with the intrinsic Christoffel symbols

$$\Gamma_{ij}^k = \sum_{\ell=1}^n \frac{1}{2} g^{kl} [\partial_i g_{j\ell} + \partial_j g_{\ell i} - \partial_\ell g_{ij}]$$

Example: Christoffel Symbols

The expression $\sum_{k=1}^n \Gamma_{ij}^k \partial_k x$ can also be seen as an intrinsic derivative of the vector field $\partial_j x$ in the direction of $\partial_i x$.

This derivative is called **covariant derivative** $\nabla_{\partial_i x} \partial_j x$.

THE

Example: Sphere

$$x \colon \left] - \frac{\pi}{3}, \frac{\pi}{3} \right[\times \left] - \frac{\pi}{3}, \frac{\pi}{3} \right[\to \mathbb{S}^2$$
$$(\alpha_1, \alpha_2) \mapsto \begin{pmatrix} \cos(\alpha_1) \cos(\alpha_2) \\ \sin(\alpha_1) \cos(\alpha_2) \\ \sin(\alpha_2) \end{pmatrix}$$

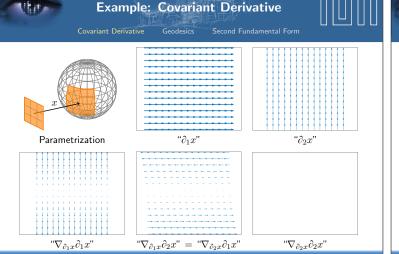
we obtain the Riemannian metric

$$g(\alpha_1, \alpha_2) = \begin{pmatrix} \cos(\alpha_2)^2 & 0 \\ 0 & 1 \end{pmatrix}$$

and the Christoffel symbols

$$\Gamma^1(\alpha_1, \alpha_2) = -\frac{\sin(2\alpha_2)}{2\cos(\alpha_2)^2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \qquad \Gamma^2(\alpha_1, \alpha_2) = \frac{\sin(2\alpha_2)}{2} \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}$$

Parametrization g_{11} q_{22} $\Gamma^1(\alpha_1,\alpha_2) = -\; \frac{\sin(2\alpha_2)}{2\cos(\alpha_2)^2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \; \Gamma^2(\alpha_1,\alpha_2) = \frac{\sin(2\alpha_2)}{2} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\Gamma^{1}_{12} = \Gamma^{1}_{2}$



Extrinsic Formulation

 $abla_Z Y$ can be formulated in a simpler manner if Y and Z can be extended to the ambient space \mathbb{R}^{n+1} of M. To this end let

$$\tilde{Y}, \tilde{Z} \colon \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$$

with $\tilde{Y}|M=Y$ and $\tilde{Z}|M=Z$.

Then, we have for every $p \in M$

$$\nabla_Z Y(p) = \pi_{T_p M} \left(D\tilde{Y}(p) \cdot \tilde{Z}(p) \right),$$

where

$$\pi_{T_pM} \colon \mathbb{R}^{n+1} \to T_pM$$

is the orthogonal projection of the ambient space \mathbb{R}^{n+1} onto T_pM .

Shortest Path in Local Coordinates

Given a coordinate map $x \colon U \to M$ of the n-dimensional manifold M, we like to find the shortest path $\gamma \colon [0,1] \to U$ that connects two points $u_0, u_1 \in U$.

The length of γ is induced by the Riemannian metric $g: U \to \mathbb{R}^{n \times n}$ via

length(
$$\gamma$$
) = $\int_0^1 \langle \dot{\gamma}(t), g(\gamma(t)) \cdot \dot{\gamma}(t) \rangle^{\frac{1}{2}} dt$

It is often easier to consider the following energy function instead

$$E(\gamma) = \left[\int_0^1 \langle \dot{\gamma}(t), g(\gamma(t)) \cdot \dot{\gamma}(t) \rangle dt \right]^{\frac{1}{2}}$$

Using the Cauchy-Schwarz inequality, we obtain

$$\operatorname{length}(\gamma) \leqslant E(\gamma)$$

with equality iff $\|\dot{\gamma}\|_q \equiv \mathrm{const}$, i.e., γ is uniformly parametrized.

Geodesic Equation

Given two points $u_0, u_1 \in U$, a geodesic $\gamma = (\gamma_1, \dots, \gamma_n) \colon [0, 1] \to U$ that connects these points minimizes

$$E(\gamma_1, \dots, \gamma_n) := \int_0^1 \sum_{i,j=1}^n g_{ij}(\gamma(t)) \cdot \dot{\gamma}^i(t) \dot{\gamma}^j(t) dt$$

The Euler-Lagrange equation is

$$0 = \frac{\partial E}{\partial \gamma_k} = \sum_{i,j=1}^n \partial_k g_{ij}(\gamma(t)) \dot{\gamma}^i(t) \dot{\gamma}^j(t) - \frac{\mathrm{d}}{\mathrm{dt}} \left[2 \sum_{i=1}^n g_{ik}(\gamma(t)) \dot{\gamma}^i(t) \right]$$
$$\ddot{\gamma}^k = -\left\langle \dot{\gamma}, \Gamma^k \dot{\gamma} \right\rangle$$

and can therefore be presented with respect to the Christoffel symbols.

Covariant Derivative

Given a coordinate map $x\colon U\to M$ of the n-dimensional manifold $M\subset\mathbb{R}^{n+1}$, and two vector fields Y and Z represented as (p = x(u))

$$Y(p) = \sum_{i=1}^{n} y_i(u)\partial_i x(u) \qquad Z(p) = \sum_{j=1}^{n} z_j(u)\partial_j x(u),$$

the covariant derivative $abla_Z Y$ is a vector field that can be represented as

$$\left[\nabla_{\partial_j x}\partial_i x\right](p) = \sum_{k=1}^n \Gamma_{ij}^k(u)\partial_k x(u)$$

$$\left[\nabla_{\partial_j x} Y\right](p) = \sum_{i=1}^n y_i(u) \nabla_{\partial_j x} \partial_i x(p) + \partial_j y_i(u) \partial_i x(u) \qquad \text{(product rule in } Y\text{)}$$

$$\left[\nabla_{Z}Y\right](p) = \sum_{j=1}^{n} z_{j}(u) \cdot \nabla_{\partial_{j}x}Y(p)$$

Geodesics

Geodesics

Let us select the two minimizers $\gamma^* \in \operatorname{argmin} \operatorname{length}(\cdot)$ and $\hat{\gamma} \in \operatorname{argmin} E(\cdot)$. Further we assume that $\bar{\gamma}^*$ is a uniform re-parametrization of γ^* .

Then we have

$$\operatorname{length}(\gamma^*) = \operatorname{length}(\bar{\gamma}^*) = E(\bar{\gamma}^*) \geqslant E(\hat{\gamma}) \geqslant \operatorname{length}(\hat{\gamma}) \geqslant \operatorname{length}(\gamma^*).$$

Therefore, we know

Every minimizer of E minimizes length

 $[\operatorname{length}(\hat{\gamma}) = \operatorname{length}(\gamma^*)]$

The minimum of E is the minimal length

 $[\operatorname{length}(\hat{\gamma}) = E(\hat{\gamma})]$

The minimizer of \boldsymbol{E} is uniformly parametrized

 $[\operatorname{length}(\hat{\gamma}) = E(\hat{\gamma})]$

Minimizing E provides us with a uniformly parametrized shortest path between two points. Every local minimum of E is called **geodesic**.

Example: Geodesics

Parametrization

 $\nabla_{\partial_2 x} \partial_2 x$

Covariant Derivative along Curves

Given a curve $\gamma \colon (0,L) \to U$ and a vector field X along the curve $c = x \circ \gamma$, we

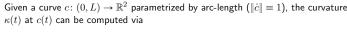
$$\frac{\nabla}{\mathrm{dt}}X := \nabla_{\dot{c}}X$$

To this end let $Y=\sum_{i=1}^n y^i \partial_i x$ be a vector field on M that coincides along c with X. Further let $Z=\sum_{i=1}^n z^i \partial_i x$ be a vector field that coincides along c with \dot{c} . Then we have $(p=x(u)=c(\tau))$

$$\nabla_Z Y(p) = \sum_{k=1}^n \left[\left. \frac{\mathrm{d}}{\mathrm{d} t} \left(y^k \circ \gamma(t) \right) \right|_{t=\tau} + \sum_{i,j=1}^n y^i(u) \Gamma^k_{ij}(u) z^j(u) \right] \partial_k x(u)$$

If we restrict this vector field to a vector field along the curve, it only depends on X and c, but not on the extension of Y and Z. Thus, $\frac{\nabla}{dt}$ is well defined.

Geodesic curvature



$$\kappa(t) = \frac{\det(\dot{c}(t), \ddot{c}(t))}{\left\|\dot{c}(t)\right\|^3} = \det(\dot{c}(t), \ddot{c}(t))$$

Given a curve $c \colon (0,L) \to M$ in the 2D manifold M that is parametrized by arc-length, we can compute the **geodesic curvature** $\kappa_g(t)$ by replacing \ddot{c} with $\frac{\nabla}{\partial t}\dot{c}$

$$\kappa_g(t) = \det\left(\dot{c}(t), \frac{\nabla}{\partial t}\dot{c}(t)\right)$$

The geodesic curvature is 0 for geodesics and can therefore be understood as an intrinsic reformulation of the classical curvature of curves.

Gauss Map

Given a 2D manifold $M \subset \mathbb{R}^3$, we call a smooth mapping

$$N\colon M\to \mathbb{S}^2$$

$$\forall p \in M \colon N(p) \bot T_p M$$

its Gauss map. For every 3D shape there exists such a mapping. (Why?)

If $x \colon U \to M$ is a coordinate mapping, we can always define a local Gauss map via

$$N: M \rightarrow S^{s}$$

$$p \mapsto \frac{\partial_1 x(u) \times \partial_2 x(u)}{\|\partial_1 x(u) \times \partial_2 x(u)\|}$$

for
$$u = x^{-1}(p)$$

If $M=f^{-1}(c)$ is given implicitly via a function $f\colon\mathbb{R}^3\to\mathbb{R}$, the Gauss map is given via $N(p) = \frac{\nabla f(p)}{\|\nabla f(p)\|}$

Self-Adjointness of the Shape Operator

We know (Linear Algebra) that self-adjoint endomorphisms are diagonalizable with real eigenvalues. Therefore, we have to prove that

$$\langle v_1, S_p(v_2) \rangle = \langle S_p(v_1), v_2 \rangle$$

for all
$$v_1, v_2 \in T_pM$$

If v_1 and v_2 are co-linear this is obvious. If they are not co-linear, one can find a local coordinate map $x: U \to M$ with x(0) = p and $v_i = \partial_i x(0)$.

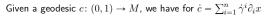
Using $\langle N \circ x(u), \partial_i x(u) \rangle \equiv 0$ leads to

$$\begin{split} 0 &= \partial_1 \left< N \circ x(u), \partial_2 x(u) \right> |_{u=0} = \left< S_p(v_1), v_2 \right> + \left< N(p), \partial_{12} x(0) \right> \\ 0 &= \partial_2 \left< N \circ x(u), \partial_1 x(u) \right> |_{u=0} = \left< S_p(v_2), v_1 \right> + \left< N(p), \partial_{21} x(0) \right> \end{split}$$

$$0 = \partial_2 \langle N \circ x(u), \partial_1 x(u) \rangle|_{u=0} = \langle S_p(v_2), v_1 \rangle + \langle N(p), \partial_{21} x(0) \rangle$$

which proves the self-adjointness of the shape operator

Geodesic Equation in Terms of the **Covariant Derivative**



$$\frac{\nabla}{\mathrm{dt}}\dot{c} = \sum_{k=1}^{n} \left[\ddot{\gamma}^{k} + \sum_{i,j=1}^{n} \dot{\gamma}^{i} \Gamma^{k}_{ij} \dot{\gamma}^{j} \right] \partial_{k} x$$
$$= \sum_{k=1}^{n} \left[\ddot{\gamma}^{k} + \left\langle \dot{\gamma}, \Gamma^{k} \dot{\gamma} \right\rangle \right] \partial_{k} x = 0$$

The geodesic equation can therefore be written as

$$\frac{\nabla}{\mathrm{dt}}\dot{c} = 0$$

Since $\frac{\nabla}{\partial t}\dot{c}$ measures how different a curve c is from a geodesic we can use it to define the geodesic curvature of a curve.

Second Fundamental Form

Shape Operator

Given a 2D manifold $M \subset \mathbb{R}^3$ together with its Gauss map $N \colon M \to \mathbb{S}^2$, we call its differential the shape operator or Weingarten mapping S

$$S_p : T_p M \to T_{N(p)} \mathbb{S}^2$$

 $v \mapsto DN(p)[v]$

Since $T_{N(p)}\mathbb{S}^2=N(p)^\perp=T_pM$, $S_p\colon T_pM\to T_pM$ is an endomorphism.

If we choose a base of T_pM , we would obtain a 2×2 matrix, but this matrix would depend on the chosen base. Nonetheless, the eigenvalues of these matrices would remain the same.

The goal is to show that S_p can be put in diagonal form and that both eigenvalues are real.

Principal Curvatures

The two eigenvalues $\kappa_1(p)$ and $\kappa_2(p)$ of S_p are called **principal curvatures** and corresponding eigenvectors $v_1(p)$ and $v_2(p)$ are called principal curvature

Note that $\kappa_g(p)$ along the geodesic c_i corresponding to $v_i(p)$ is 0 and the curvature of this curve coincides with $\kappa_i(p)$. In that sense, we can think of the principal curvatures as natural generalizations of the planar curvature.

We can derive two other curvatures from the principal curvatures:

$$\begin{split} H(p) := & \frac{\kappa_1(p) + \kappa_2(p)}{2} & = \frac{1}{2}\operatorname{tr}(\mathcal{M}) \\ K(p) := & \kappa_1(p) \cdot \kappa_2(p) & = \operatorname{det}(\mathcal{M}) \end{split}$$

$$=\kappa_1(p)\cdot\kappa_2(p)$$
 $=\det(\mathcal{M})$ (Gauss curvature)

given a representing matrix \mathcal{M} of S_p

(mean curvature)

Second Fundamental Form

Given the shape operator $S_p \colon T_pM \to T_pM$, we can define the **Second Fundamental Form**

$$\mathbb{I} \colon T_pM \times T_pM \to \mathbb{R}$$

$$(v_1, v_2) \mapsto \langle S_p v_1, v_2 \rangle$$

This means, we have

$$\partial_{ij}x = \sum_{k=1}^{n} \Gamma_{ij}^{k} \partial_{k}x - \mathbb{I}(\partial_{i}x, \partial_{j}x) \cdot N$$

and the second fundamental form can be computed via

$$\mathbb{I}(\partial_i x, \partial_j x) = -\langle \partial_{ij} x, N \rangle.$$

Shape Operator in Local Coordinates

Any coordinate map $x: U \to M$ provides for a base $\{\partial_1 x(u), \dots, \partial_n x(u)\}$ of T_pM for p=x(u). In this base, the shape operator S_p can be written as

$$S_p(\partial_j x(u)) = \sum_{i=1}^n \mathcal{M}_j^i \partial_i x(u)$$

This means, we have

$$\mathbb{I}(\partial_j x, \partial_k x) = \langle S_p(\partial_j x), \partial_k x \rangle = \sum_{i=1}^n \langle \mathcal{M}_j^i \partial_i x, \partial_k x \rangle = \sum_{i=1}^n g_{ki} \mathcal{M}_j^i$$

In other words the representating matrix ${\mathcal M}$ of S_p satisfies the Weingarten

$$\mathcal{M} = g^{-1} \cdot \mathbb{I}$$