Analysis of 3D Shapes (IN2238)

Frank R. Schmidt
Matthias Vestner

Summer Semester 2016

Theorema Egregium

Summary and Notations

Theorema Egregium Gauss-Bonnet Euler Characteristic

Given a coordinate map $x: U \rightarrow M$ and the Gauss map $G: M \rightarrow \mathbb{S}^{2}$ of the surface $M \subset \mathbb{R}^{3}$, we have for $p=x(u)$ and $v_{1}, v_{2} \in T_{p} M$
■ $\left\{\partial_{1} x(u), \partial_{2} x(u)\right\}$ is a base of the tangent plane $T_{p} M$.

- $g_{i j}(u)=\left\langle\partial_{i} x(u), \partial_{j} x(u)\right\rangle$ is the first fundamental form.

■ $N(u)=\frac{\partial_{1} x(u) \times \partial_{2} x(u)}{\| \partial_{1} x(u) \times \partial_{2} x(u)}=G \circ x(u)$ is the Gauss map in local coordinates.

- $S_{p}\left[v_{i}\right]=D G(p)\left[v_{i}\right]$ is the shape operator.
- $\mathbb{I}\left(v_{1}, v_{2}\right)=\left\langle S_{p}\left[v_{1}\right], v_{2}\right\rangle$ is the second fundamental form.

Using $\Gamma_{i j}^{k}$ for the Christoffel symbols and $\alpha_{i j}(u)=\mathbb{I}\left(\partial_{i} x(u), \partial_{j} x(u)\right)$, we have

$$
\begin{aligned}
& \partial_{i j} x(u)=\sum_{k=1}^{2} \Gamma_{i j}^{k}(u) \partial_{k} x(u)-\alpha_{i j}(u) N(u) \\
& \partial_{j} N(u)=D G(p)\left[\partial_{j} x(u)\right]=\sum_{i=1}^{2} \nu_{j}^{i}(u) \partial_{i} x(u)
\end{aligned}
$$

IN2238 - Analysis of Three-Dimensional Shapes
13. Gauss Curvature - 4 / 24

The following expression is intrinsic

$$
\begin{aligned}
\alpha_{11} \nu_{2}^{2}-\alpha_{12} \nu_{1}^{2} & =\alpha_{11} \sum_{k=1}^{2} g^{2 k} \alpha_{k 2}-\alpha_{12} \sum_{k=1}^{2} g^{2 k} \alpha_{k 1} \\
& =g^{22}\left[\alpha_{11} \alpha_{22}-\alpha_{12} \alpha_{21}\right]+g^{21}\left[\alpha_{11} \alpha_{12}-\alpha_{12} \alpha_{11}\right] \\
& =g_{11} \frac{\alpha_{11} \alpha_{22}-\alpha_{12} \alpha_{21}}{g_{11} \cdot g_{22}-g_{12}^{2}}=g_{11} K
\end{aligned}
$$

Theorem 1 (Theorema Egregium). The Gauss curvature K is an intrinsic feature. In particular, we have

$$
K=\frac{1}{g_{11}}\left[\left(\partial_{2} \Gamma_{11}^{2}-\partial_{1} \Gamma_{12}^{2}\right)+\sum_{k=1}^{2}\left(\Gamma_{11}^{k} \Gamma_{2 k}^{2}-\Gamma_{12}^{k} \Gamma_{1 k}^{2}\right)\right]
$$

IN2238-Analysis of Three-Dimensional Shapes

IN2238 - Analysis of Three-Dinensional Shapes

 13. Gauss Cuvature - $11 / 24$

Given a coordinate map $x: U \rightarrow M$, the vector fields $\partial_{1} x$ and $\partial_{2} x$ form a base. Using Gram-Schmidt, we can create three orthonormal vector fields
$Y_{1}, Y_{2}, Y_{3}: M \rightarrow \mathbb{R}^{3}$ via $(p=x(u))$

$$
\begin{aligned}
& Y_{1}(p)=\frac{\partial_{1} x(u)}{\left\|\partial_{1} x(u)\right\|} \\
& Y_{2}(p)=\frac{\partial_{2} x(u)-\left\langle Y_{1}(p), \partial_{2} x(u)\right\rangle}{\left\|\partial_{2} x(u)-\left\langle Y_{1}(p), \partial_{2} x(u)\right\rangle\right\|} \\
& Y_{3}(p)=Y_{1}(p) \times Y_{2}(p)
\end{aligned}
$$

We call these three vector fields a moving frame.
Note that a moving frame can not necessarily be derived from a coordinate map x, but it is quite usefull to have an orthonormal system at each point of the coordinate domain U respectively its codomain $x(U)$.

IN2238 - Analysis of Three-Dimensional Shapes
13. Gauss Curvature - 10 / 24

IN2238 - Analysis of Three Dimensional Shapes

Given a closed non-intersecting curve $\gamma: I \rightarrow U$ and its corresponding curve $c=x \circ \gamma: I \rightarrow M$, we can define the angle function $\theta: c(I) \rightarrow \mathbb{R}$ via $(p=x(u)=c(t))$

$$
\theta(p)=\nsucceq\left(\dot{c}(t), Y_{1}(p)\right)
$$

$\theta(p)$ is unique up to multiples of 2π, but if we fix $\theta(c(0)) \in[0,2 \pi)$ there is only one unique $\theta(\cdot)$ that remains continuous.
For this setup, we have

$$
\int_{c(I)} \theta^{\prime}(p) \mathrm{dp}=\theta(c(1))-\theta(c(0))=2 \pi
$$

IN2238 - Analysis of Three Dimensional Shapes
13. Gauss Curature - 14 / 24

What

Recap: Geodesic Curvature
Theorema Egregium Gauss-Bonnet Euler Characteristic

Given a curve $c:(0, L) \rightarrow M$ that is parametrized by arc-length, we know that $\langle\dot{c}(t), \ddot{c}(t)\rangle=0$. Since $\frac{\nabla}{\mathrm{dt}} \dot{c}(p)$ contains the component of $\ddot{c}(t)$ in $T_{p} M$, we have

$$
\frac{\nabla}{\mathrm{dt}} \dot{c}(p)=\kappa_{g}(p) \dot{c}(t)^{\perp}
$$

where $\dot{c}(t)^{\perp}$ is the vector in $T_{p} M$ that is normal to $\dot{c}(t)$.
Using the angle function θ, we obtain

$$
\kappa_{g}(p)=\left\langle\frac{\nabla}{\mathrm{dt}} \dot{c}(p), \dot{c}(t)^{\perp}\right\rangle
$$

with

$$
\binom{\dot{c}(t)}{\dot{c}(t)^{\perp}}=\left(\begin{array}{cc}
\cos (\theta(p)) & \sin (\theta(p)) \\
-\sin (\theta(p)) & \cos (\theta(p))
\end{array}\right) \cdot\binom{Y_{1}(p)}{Y_{2}(p)}
$$

We have

$$
\nabla_{\dot{c}} \dot{c}=\cos (\theta) \nabla_{\dot{c}} Y_{1}+\sin (\theta) \nabla_{\dot{c}} Y_{2}-\sin (\theta) \theta^{\prime} Y_{1}+\cos (\theta) \theta^{\prime} Y_{2}
$$

and therefore

$$
\begin{aligned}
\kappa_{g} & =\left\langle\nabla_{\dot{c}} \dot{c},-\sin (\theta) Y_{1}+\cos (\theta) Y_{2}\right\rangle \\
& =\theta^{\prime}+\left\langle\cos (\theta) \nabla_{\dot{c}} Y_{1}+\sin (\theta) \nabla_{\dot{c}} Y_{2},-\sin (\theta) Y_{1}+\cos (\theta) Y_{2}\right\rangle \\
& =\theta^{\prime}+\left\langle\omega_{12}, \dot{c}\right\rangle
\end{aligned}
$$

In other words

$$
-\sum_{i<3} \int_{\operatorname{Im} c_{i}}\left\langle\omega_{12}(p), \dot{c}_{i}(t)\right\rangle \mathrm{dp}+\sum_{i<3} \int_{\operatorname{Im} c_{i}} \kappa_{g}(p) \mathrm{dp}+\sum_{i<3} \alpha_{i}=2 \pi
$$

IN2238 - Analysis of Three Dimensional Shapes

13. Gauss Cuvature - 17 / 24

In order to express the integral of $\left\langle\omega_{12}, \dot{c}\right\rangle$ in means of p alone, we have

$$
\int_{\operatorname{Im} c_{i}}\left\langle\omega_{12}(p), \dot{c}(t)\right\rangle \mathrm{dp}=\int_{\operatorname{Im} c_{i}}\left\langle\nabla_{\dot{c}} Y_{1}(p), Y_{2}(p)\right\rangle \mathrm{dp}
$$

Analogously to the Green integration theorem, one can show that

$$
\int_{\partial T}\left\langle\nabla_{\dot{c}} Y_{1}(p), Y_{2}(p)\right\rangle \mathrm{dp}=\int_{T}\left\langle R\left(Y_{1}, Y_{2}\right) Y_{1}(p), Y_{2}(p)\right\rangle \mathrm{dp}=-\int_{T} K(p) \mathrm{dp}
$$

In other words the Theorem of Gauss-Bonnet for Triangles is

$$
\int_{T} K(p) \mathrm{dp}+\int_{\partial T} \kappa_{g}(p) \mathrm{dp}+\sum_{i<3} \alpha_{i}=2 \pi
$$

Gauss-Bonnet with Smooth Boundary

 Theorema Egregium Gauss-Bonnet Euler Characteristic

Let us assume we have a surface M with a smooth boundary. Further assume a smooth triangulation that uses the vertex set V, the edge set E and the face set F. Then we have

$$
\begin{aligned}
2 \pi \cdot|F| & =\sum_{T \in F}\left[\int_{T} K(p) \mathrm{dp}+\int_{\partial T} \kappa_{g}(p) \mathrm{dp}+\sum_{i<3} \alpha_{i}^{(T)}\right] \\
& =\int_{M} K(p) \mathrm{dp}+\int_{\partial M} \kappa_{g}(p) \mathrm{dp}+|E| \cdot 2 \pi-|V| \cdot 2 \pi
\end{aligned}
$$

In other words the Theorem of Gauss-Bonnet for Surfaces With Smooth Boundaries is

$$
\int_{M} K(p) \mathrm{dp}+\int_{\partial M} \kappa_{g}(p) \mathrm{dp}=2 \pi(|F|-|E|+|V|)
$$

Given a triangulation (V, E, F) of a surface M, we call

$$
\chi(M)=|V|-|E|+|F| \in \mathbb{Z}
$$

the Euler Characteristic of M.
Due to the Gauss-Bonnet theorem, we know that

$$
\chi(M)=\frac{\int_{M} K(p) \mathrm{dp}+\int_{\partial M} \kappa_{g}(p) \mathrm{dp}}{2 \pi}
$$

is a global property of M.
For every triangulation (V, E, F) of \mathbb{S}^{2} we have

$$
|V|-|E|+|F|=\chi\left(\mathbb{S}^{2}\right)=2
$$

Given a vector field $V: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, and $S=[0,1] \times[0,1]$ the unit square. Then we have

$$
\begin{aligned}
\int_{S} \partial_{1} V^{2}(x, y)-\partial_{2} V^{1}(x, y) \mathrm{dx} \mathrm{dy}= & \int_{0}^{1} V^{2}(1, y)-V^{2}(0, y) \mathrm{dy}+ \\
& \int_{0}^{1} V^{1}(x, 0)-V^{1}(x, 1) \mathrm{dx}
\end{aligned}
$$

In other words, we have $\int_{S} \partial_{1} V^{2}(p)-\partial_{2} V^{1}(p) \mathrm{dp}=\int_{\partial S} V^{1} \mathrm{dx}+V^{2} \mathrm{dy}$.
This is the Green's theorem, which is also true for general open sets S with a smooth boundary ∂S parametrized by $c:[0 ; 1] \rightarrow \partial S$:

$$
\int_{S} \partial_{1} V^{2}(p)-\partial_{2} V^{1}(p) \mathrm{dp}=\int_{\partial S} V^{1} \mathrm{dx}+V^{2} \mathrm{dy}=\int_{0}^{1}\langle V(c(t)), \dot{c}(t)\rangle \mathrm{dt}
$$

IN2238 - Analysis of Three-Dimensional Shapes
13. Gauss Curvature - 18 / 24

Let us assume we have a smooth triangulation of a closed surface M that uses the vertex set V, the edge set E and the face set F, then we have

$$
\begin{aligned}
2 \pi \cdot|F| & =\sum_{T \in F}\left[\int_{T} K(p) \mathrm{dp}+\int_{\partial T} \kappa_{g}(p) \mathrm{dp}+\sum_{i<3} \alpha_{i}^{(T)}\right] \\
& =\int_{M} K(p) \mathrm{dp}+|E| \cdot 2 \pi-|V| \cdot 2 \pi
\end{aligned}
$$

In other words the Theorem of Gauss-Bonnet for Closed Surfaces is

$$
\int_{M} K(p) \mathrm{dp}=2 \pi(|F|-|E|+|V|)
$$

Given a discrete triangulation (V, E, F) of a surface M, we assume that at a vertex $v \in V$, we have k triangles T_{1}, \ldots, T_{k} with the angles α_{i}, β_{i} and $\gamma_{i}\left(\gamma_{i}\right.$ at v). It is common to use the following approximation of the Gauss curvature as a feature (point descriptor)

$$
K(v):=\frac{\int_{\bigcup_{i=1}^{k} \frac{1}{3} T_{i}} K(p) \mathrm{dp}}{\sum_{i=1}^{k} \frac{1}{3} \operatorname{area}\left(T_{i}\right)} \approx \frac{2 \pi-\sum_{i=1}^{k} \gamma_{i}}{\sum_{i=1}^{k} \frac{1}{3} \operatorname{area}\left(T_{i}\right)}
$$

