Analysis of 3D Shapes (IN2238)

Frank R. Schmidt Matthias Vestner

Summer Semester 2016

13. Gauss Curvature	2
Theorema Egregium	3
Summary and Notations	4
Third Derivatives	5
Theorema Egregium	6
Riemann Curvature Tensor	7
Different Gauss Curvatures	8
Gauss-Bonnet	9
Moving Frame	10
Moving Frame and Coordinate Maps	11
Derivatives of the Moving Frame	12
Moving Frame and Coordinate Maps	13
Winding Number for Circles	14
Winding Number for Triangles	15
Recap: Geodesic Curvature	16
Integrating Geodesic Curvature	١7

uler Characteristic	22
Gauss-Bonnet with Smooth Boundary	. 21
Gauss-Bonnet without Boundary	. 20
Integrating ω_{12}	. 19
Integration Theorem of Green	. 18

Euler Characteristic

Euler Chracteristic.	23
Gauss Curvature at a Vertex	24

13. Gauss Curvature

Theorema Egregium

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 4 / 24

2 / 24

3 / 24

Third Derivatives

Gauss curvature $K(p) = \det(\nu(u))$ depends on the derivatives of N.

To this end let

$$\partial_{\ell j i} x = \sum_{k=1}^{2} \partial_{\ell} \Gamma_{ij}^{k} \partial_{k} x + \Gamma_{ij}^{k} \partial_{\ell k} x - \partial_{\ell} \alpha_{ij} N - \alpha_{ij} \partial_{\ell} N.$$

Observing that $\partial_{211}x = \partial_{121}x$, we obtain for the ∂_2x -component:

$$\partial_2 \Gamma_{11}^2 + \sum_{k=1}^2 \Gamma_{11}^k \Gamma_{2k}^2 - \alpha_{11} \nu_2^2 = \partial_1 \Gamma_{12}^2 + \sum_{k=1}^2 \Gamma_{12}^k \Gamma_{1k}^2 - \alpha_{12} \nu_1^2$$

In other words, $\alpha_{11}\nu_2^2-\alpha_{12}\nu_1^2$ is an intrinsic expression.

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 5 / 24

Theorema Egregium

The following expression is intrinsic:

$$\begin{aligned} \alpha_{11}\nu_2^2 - \alpha_{12}\nu_1^2 = &\alpha_{11}\sum_{k=1}^2 g^{2k}\alpha_{k2} - \alpha_{12}\sum_{k=1}^2 g^{2k}\alpha_{k1} \\ = &g^{22}\left[\alpha_{11}\alpha_{22} - \alpha_{12}\alpha_{21}\right] + g^{21}\left[\alpha_{11}\alpha_{12} - \alpha_{12}\alpha_{11}\right] \\ = &g_{11}\frac{\alpha_{11}\alpha_{22} - \alpha_{12}\alpha_{21}}{g_{11} \cdot g_{22} - g_{12}^2} = g_{11}K \end{aligned}$$

Theorem 1 (Theorema Egregium). The Gauss curvature K is an intrinsic feature. In particular, we have

$$K = \frac{1}{g_{11}} \left[\left(\partial_2 \Gamma_{11}^2 - \partial_1 \Gamma_{12}^2 \right) + \sum_{k=1}^2 \left(\Gamma_{11}^k \Gamma_{2k}^2 - \Gamma_{12}^k \Gamma_{1k}^2 \right) \right]$$

IN2238 - Analysis of Three-Dimensional Shapes

Riemann Curvature Tensor

For the Theorema Egregium, we separated the term $\partial_{211}x - \partial_{121}x$ in an intrinsic part (using Christoffel Symbols) and an extrinsic part.

Since $\partial_{211}x = \partial_{121}x$, we were able to express the "extrinsic part" with the help of the Christoffel symbols.

Riemann used this insight in order to define the **Riemann Curvature Tensor** R. Given two vector fields X and Y it assigns to each vector field Z and new vector field R(X,Y)Z. If X and Y are given as $\partial_i x$ and $\partial_i x$ of a coordinate map x, R is defined via

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z$$

In other words, the Gauss curvature can be intrinsically written as

$$K = \frac{\langle R(\partial_2 x, \partial_1 x) \partial_1 x, \partial_2 x \rangle}{\det(g)}$$

13. Gauss Curvature – 6 / 24

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 7 / 24

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 8 / 24

Gauss-Bonnet

Moving Frame

Given a coordinate map $x: U \to M$, the vector fields $\partial_1 x$ and $\partial_2 x$ form a base. Using Gram-Schmidt, we can create three orthonormal vector fields $Y_1, Y_2, Y_3: M \to \mathbb{R}^3$ via (p = x(u))

$$Y_1(p) = \frac{\partial_1 x(u)}{\|\partial_1 x(u)\|}$$

$$Y_2(p) = \frac{\partial_2 x(u) - \langle Y_1(p), \partial_2 x(u) \rangle}{\|\partial_2 x(u) - \langle Y_1(p), \partial_2 x(u) \rangle\|}$$

$$Y_3(p) = Y_1(p) \times Y_2(p)$$

We call these three vector fields a **moving frame**.

Note that a moving frame can not necessarily be derived from a coordinate map x, but it is quite usefull to have an orthonormal system at each point of the coordinate domain U respectively its codomain x(U).

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature - 10 / 24

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 11 / 24

Derivatives of the Moving Frame

The differentials $DY_i(p) \colon T_pM \to \mathbb{R}^3$ can be written as

$$DY_i(p)[v] = \sum_{j=1}^3 \langle \omega_{ij}(p), v \rangle Y_j(p) \qquad \qquad \omega_{ij}(p) \in T_p M$$

Since we have $\langle Y_i,Y_j
angle=0$, we obtain

$$0 = D \langle Y_i(p), Y_j(p) \rangle [v] = \langle DY_i(p)[v], Y_j(p) \rangle + \langle Y_i(p), DY_j(p)[v] \rangle$$

= $\langle \omega_{ij}(p) + \omega_{ji}(p), v \rangle$.

This means, we have

$$\begin{pmatrix} DY_1(p)[v] \\ DY_2(p)[v] \\ \Box Y_3(p)[v] \end{pmatrix} = \begin{pmatrix} 0 & \langle \omega_{12}(p), v \rangle & \langle \omega_{13}(p), v \rangle \\ -\langle \omega_{12}(p), v \rangle & 0 & \langle \omega_{23}(p), v \rangle \\ -\langle \omega_{13}(p), v \rangle & -\langle \omega_{23}(p), v \rangle & 0 \end{pmatrix} \cdot \begin{pmatrix} Y_1(p) \\ Y_2(p) \\ Y_3(p) \end{pmatrix}$$

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 12 / 24

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 13 / 24 $\,$

Winding Number for Circles

Given a closed non-intersecting curve $\gamma: I \to U$ and its corresponding curve $c = x \circ \gamma: I \to M$, we can define the angle function $\theta: c(I) \to \mathbb{R}$ via (p = x(u) = c(t))

$$\theta(p) = \measuredangle(\dot{c}(t), Y_1(p))$$

 $\theta(p)$ is unique up to multiples of 2π , but if we fix $\theta(c(0)) \in [0, 2\pi)$ there is only one unique $\theta(\cdot)$ that remains continuous.

For this setup, we have

$$\int_{c(I)} \theta'(p) \,\mathrm{d}p = \theta(c(1)) - \theta(c(0)) = 2\pi$$

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 14 / 24

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 15 / 24

Recap: Geodesic Curvature

Given a curve $c: (0, L) \to M$ that is parametrized by arc-length, we know that $\langle \dot{c}(t), \ddot{c}(t) \rangle = 0$. Since $\frac{\nabla}{\mathrm{dt}} \dot{c}(p)$ contains the component of $\ddot{c}(t)$ in $T_p M$, we have

$$\frac{\nabla}{\mathrm{dt}}\dot{c}(p) = \kappa_g(p)\dot{c}(t)^{\perp},$$

where $\dot{c}(t)^{\perp}$ is the vector in T_pM that is normal to $\dot{c}(t).$

Using the angle function θ , we obtain

$$\kappa_g(p) = \left\langle \frac{\nabla}{\mathrm{dt}} \dot{c}(p), \dot{c}(t)^{\perp} \right\rangle$$

with

$$\begin{pmatrix} \dot{c}(t) \\ \dot{c}(t)^{\perp} \end{pmatrix} = \begin{pmatrix} \cos(\theta(p)) & \sin(\theta(p)) \\ -\sin(\theta(p)) & \cos(\theta(p)) \end{pmatrix} \cdot \begin{pmatrix} Y_1(p) \\ Y_2(p) \end{pmatrix}$$

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 16 / 24

Integrating Geodesic Curvature

We have

$$\nabla_{\dot{c}}\dot{c} = \cos(\theta)\nabla_{\dot{c}}Y_1 + \sin(\theta)\nabla_{\dot{c}}Y_2 - \sin(\theta)\theta'Y_1 + \cos(\theta)\theta'Y_2$$

and therefore

$$\kappa_g = \langle \nabla_{\dot{c}} \dot{c}, -\sin(\theta) Y_1 + \cos(\theta) Y_2 \rangle$$

=\theta' + \langle \cos(\theta) \nabla_{\circ} Y_1 + \sin(\theta) \nabla_{\circ} Y_2, -\sin(\theta) Y_1 + \cos(\theta) Y_2 \rangle
=\theta' + \langle \omega_{12}, \circ \rangle

In other words

$$-\sum_{i<3}\int_{\mathrm{Im}\,c_i} \langle \omega_{12}(p), \dot{c}_i(t)\rangle \,\mathrm{dp} + \sum_{i<3}\int_{\mathrm{Im}\,c_i} \kappa_g(p) \,\mathrm{dp} + \sum_{i<3} \alpha_i = 2\pi$$

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 17 / 24

Integration Theorem of Green

Given a vector field $V \colon \mathbb{R}^2 \to \mathbb{R}^2$, and $S = [0,1] \times [0,1]$ the unit square. Then we have

$$\int_{S} \partial_1 V^2(x, y) - \partial_2 V^1(x, y) \, \mathrm{dx} \, \mathrm{dy} = \int_0^1 V^2(1, y) - V^2(0, y) \, \mathrm{dy} + \int_0^1 V^1(x, 0) - V^1(x, 1) \, \mathrm{dx}$$

In other words, we have $\int_S \partial_1 V^2(p) - \partial_2 V^1(p) dp = \int_{\partial S} V^1 dx + V^2 dy.$

This is the **Green's theorem**, which is also true for general open sets S with a smooth boundary ∂S parametrized by $c: [0;1] \rightarrow \partial S$:

$$\int_{S} \partial_1 V^2(p) - \partial_2 V^1(p) \,\mathrm{dp} = \int_{\partial S} V^1 \,\mathrm{dx} + V^2 \,\mathrm{dy} = \int_0^1 \langle V(c(t)), \dot{c}(t) \rangle \,\mathrm{dt}$$

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature - 18 / 24

Integrating ω_{12}

In order to express the integral of $\langle \omega_{12},\dot{c}\rangle$ in means of p alone, we have

$$\int_{\operatorname{Im} c_i} \langle \omega_{12}(p), \dot{c}(t) \rangle \, \mathrm{dp} = \int_{\operatorname{Im} c_i} \langle \nabla_{\dot{c}} Y_1(p), Y_2(p) \rangle \, \mathrm{dp}$$

Analogously to the Green integration theorem, one can show that

$$\int_{\partial T} \left\langle \nabla_{\dot{c}} Y_1(p), Y_2(p) \right\rangle \mathrm{dp} = \int_T \left\langle R(Y_1, Y_2) Y_1(p), Y_2(p) \right\rangle \mathrm{dp} = -\int_T K(p) \, \mathrm{dp}$$

In other words the Theorem of Gauss-Bonnet for Triangles is

$$\int_{T} K(p) \,\mathrm{dp} + \int_{\partial T} \kappa_g(p) \,\mathrm{dp} + \sum_{i < 3} \alpha_i = 2\pi$$

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 19 / 24

Gauss-Bonnet without Boundary

Let us assume we have a smooth triangulation of a closed surface M that uses the vertex set V, the edge set E and the face set F, then we have

$$2\pi \cdot |F| = \sum_{T \in F} \left[\int_T K(p) \, \mathrm{dp} + \int_{\partial T} \kappa_g(p) \, \mathrm{dp} + \sum_{i < 3} \alpha_i^{(T)} \right]$$
$$= \int_M K(p) \, \mathrm{dp} + |E| \cdot 2\pi - |V| \cdot 2\pi$$

In other words the Theorem of Gauss-Bonnet for Closed Surfaces is

$$\int_{M} K(p) \, \mathrm{dp} = 2\pi \left(|F| - |E| + |V| \right)$$

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 20 / 24

Gauss-Bonnet with Smooth Boundary

Let us assume we have a surface M with a smooth boundary. Further assume a smooth triangulation that uses the vertex set V, the edge set E and the face set F. Then we have

$$2\pi \cdot |F| = \sum_{T \in F} \left[\int_T K(p) \, \mathrm{dp} + \int_{\partial T} \kappa_g(p) \, \mathrm{dp} + \sum_{i < 3} \alpha_i^{(T)} \right]$$
$$= \int_M K(p) \, \mathrm{dp} + \int_{\partial M} \kappa_g(p) \, \mathrm{dp} + |E| \cdot 2\pi - |V| \cdot 2\pi$$

In other words the Theorem of Gauss-Bonnet for Surfaces With Smooth Boundaries is

$$\int_{M} K(p) \,\mathrm{dp} + \int_{\partial M} \kappa_g(p) \,\mathrm{dp} = 2\pi \left(|F| - |E| + |V| \right)$$

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 21 / 24

Euler Chracteristic

Given a triangulation (V, E, F) of a surface M, we call

 $\chi(M) = |V| - |E| + |F| \in \mathbb{Z}$

the **Euler Characteristic** of M.

Due to the Gauss-Bonnet theorem, we know that

$$\chi(M) = \frac{\int_M K(p) \,\mathrm{d}p + \int_{\partial M} \kappa_g(p) \,\mathrm{d}p}{2\pi}$$

is a global property of M.

For every triangulation (V,E,F) of \mathbb{S}^2 we have

$$|V| - |E| + |F| = \chi(\mathbb{S}^2) = 2$$

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 23 / 24

Gauss Curvature at a Vertex

Given a discrete triangulation (V, E, F) of a surface M, we assume that at a vertex $v \in V$, we have k triangles T_1, \ldots, T_k with the angles α_i , β_i and γ_i (γ_i at v). It is common to use the following approximation of the Gauss curvature as a feature (point descriptor)

$$K(v) := \frac{\int_{\bigcup_{i=1}^{k} \frac{1}{3}T_i} K(p) \, \mathrm{d}p}{\sum_{i=1}^{k} \frac{1}{3} \operatorname{area}(T_i)} \approx \frac{2\pi - \sum_{i=1}^{k} \gamma_i}{\sum_{i=1}^{k} \frac{1}{3} \operatorname{area}(T_i)}$$

IN2238 - Analysis of Three-Dimensional Shapes

13. Gauss Curvature – 24 / 24