
Analysis of 3D Shapes (IN2238)

Frank R. Schmidt
Matthias Vestner

Summer Semester 2017

14. Stiffness matrix

Recap Stiffness matrix

Recap

Recap Stiffness matrix

Shape matching

Recap Stiffness matrix

IN2238 - Analysis of Three-Dimensional Shapes 14. Stiffness matrix – 4 / 22

Our goal is to assign each point on the source shape a corresponding point on the
target shape. Although a diffeomorphic (bijective and diff’able in both directions)
mapping is desired, most of the approaches we discuss will not even guarantee
injective mappings (remember nearest neighbors from ICP). Eventually we deal
with discretized shapes, mostly triangular meshes. The correspondence will then be
a mapping between the vertices.

Isometries
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A mapping Φ : M Ñ N between two shapes (manifolds) is an isometry if

dMpx, yq “ dN pΦpxq,Φpyqq for all points x, y P M.

If such a mapping exists M and N are called isometric. Many shape matching
approaches assume that the shapes to be matched are (nearly) isometric. The task
then becomes to find the (almost-)isometry Φ.

Euclidean isometry
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Last week we have seen two methods (ICP and PCA) that can be used to find a
correspondence between shapes that are isometric with respect to the Euclidean
metric (rigid alignment).
Today we discuss a way to transform the more difficult problem of intrinsic
isometries into a rigid alignment problem.

Canonical forms
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The main idea is to transform the two shapes to be matched into canonical forms
such that the two canonical forms are isometric with respect to the euclidean
metric.

Dirichlet energy
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As an alternative to MDS a popular approach to embed a shape M into a
Euclidean space is by finding functions ϕi : M Ñ R that are orthonormal
i.e.xϕi, ϕjyL2pMq “ δij and minimize the Dirichlet energy

EDpϕiq “
ż

M
x∇ϕi,∇ϕiydp “

ż

M
}∇ϕi}2 dp.

The Dirichlet energy measures how variable a function is. Let M “ p´π, πq, then

EDpcospkxqq “
ż π

´π

}∇ cospkxq}2 dx “ k2
ż π

´π

sin2pkxqdx “ k2
„
x

2
´ sinp2kxq

4k

π

´π

“ πk2



Gradient

Recap Stiffness matrix

IN2238 - Analysis of Three-Dimensional Shapes 14. Stiffness matrix – 9 / 22

We have yet not defined what the gradient of a function f : M Ñ R is. We do
know gradients of functions defined on Euclidean domains. For a function
f̃ : R2 Ñ R the gradient is given by

∇f̃ “
˜ Bf̃

Bu1Bf̃
Bu1

¸

Geometric meaning of the gradient
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Geometric meaning of the gradient

■ the vector that points in the direction of steepest increase of f̃
■ its length measures the strength of increase
■ relationship with the differential of f̃ :

df̃puqp~vq “ lim
hÑ0

f̃pu ` h~vq ´ f̃puq
h

“ d

dh
f̃pu` h~vq|h“0

“ x∇f̃puq, ~vy

Gradient on manifold
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Let f : M Ñ R be a differentiable function. The gradient ∇fppq at p P M is the
unique element of TpM such that

x∇fppq, ~vy “ dfppqrvs
In local coordinates
Let p “ xpuq. Given ∇f̃puq P R2 and the first fundamental form gpuq P R2ˆ2, the
coefficients α P R2 (local coordinates) of ∇f “ Dx ¨ α P TpM are given by

α “ g´1puq∇f̃puq
. Let β P R2 be the coefficients of ~v P TpM. Then

dfppqr~vs “ x∇f̃puq, βy “ xα, βygpuq “ x∇f,~vy

Notice that this in general is a different vector then ∇f̃puq!

Stiffness matrix
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EDpϕiq “
ż

M
x∇ϕi,∇ϕiydp “

ż

M
}∇ϕi}2 dp.

Given two arbitrary functions f, g : M Ñ R we can also consider

ż

M
x∇f,∇gydp

Let fpxq “ řV
i“1 fiψippq and g “ řV

j“1 gjψjppq now be PL functions defined on a
triangular mesh (ψi being hat functions).

ż

M
x∇f,∇gydp “

ÿ

i

ÿ

j

figj

ż

M
x∇ψi,∇ψjydp

looooooooomooooooooon
Sij

“ fTSg

The symmetric (but not pos. definit!) matrix S is called stiffness matrix.

Stiffness matrix - 2D, 1/3
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We will now derive expressions for the entries of the stiffness matrix (first in 2D).

v1

v2
v3

v4

v5

v6

v7 v8
v9

arclength parametrization

ψ3 ˝ x ψ6 ˝ x

arclength parametrization

Stiffness matrix - 2D, 2/3
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ψ3 ˝ x ψ4 ˝ x parametrization of eij “ pvi, vjq from

reference interval r0, 1s
xptq “ p1 ´ tqvi ` tvj
gptq “ }eij}2

ż

eij

x∇ψippq,∇ψjppqydp “
ż 1

0
xg´1∇ψipxptqq, g´1∇ψjpxptqqyg?

gdt

“
ż 1

0

1

}eij}2
x´1, 1y }eij} dt

“ ´ 1

}eij}

Stiffness matrix - 2D, 3/3
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Sij “
ż

M
x∇ψippq,∇ψjppqydp “

$
’’&
’’%

0 if pvi, vjq R E
´ 1

}eij} if pvi, vjq P E
ř

kPN piq
1

}eik} if i “ j

In the special case where all the edges have the same length eij “ s, the stiffness
matrix is given by:

S “ 1

s

¨
˚̊
˚̊
˚̊
˚̊
˝

2 ´1 0 ´1
´1 2 ´1 0 0
0 ´1 2 ´1 0 0
...

...

0
. . . ´1

´1 0 . . . ´1 2

˛
‹‹‹‹‹‹‹‹‚



Stiffness matrix - 3D, 1/4
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We want to derive Sij “ ş
Mx∇ψippq,∇ψjppqydp for triangular meshes. Due to the

localized support of the basis functions we observe:

Sij “

$
’’&
’’%

0 if pvi, vjq R Eş
Tijk

x∇ψippq,∇ψjppqydp` ş
Tijk1 x∇ψippq,∇ψjppqydp if pvi, vjq P E

ř
iPT

ş
T }∇ψippq}2 dp if i “ j

where k and k1 are such that pvk, vi, vjq, pv1
k, vi, vjq P F and the sum in the third

case is over all triangles T having vi as a vertex.

vk

v1
k

T1

Stiffness matrix - 3D, 2/4
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Next we derive
ş
Tijk

x∇ψippq,∇ψjppqydp.
Lets first recap the parametrization of the triangle Tijk via

xpuq “ vk ` u1 pvi ´ vkqlooomooon
e1

`u2 pvj ´ vkqlooomooon
e2

vk

v1
k

p0, 0q p1, 0q

p0, 1q

Tref

For the first fundamental form and it inverse this yields

gpuq “
ˆ }e1}2 xe1, e2y

xe1, e2y }e2}2
˙

g´1puq “ 1

det g

ˆ }e2}2 ´xe1, e2y
´xe1, e2y }e1}2

˙

Moreover

ϕ̃ipuq “ ϕipxpuqq “ u1,∇ϕ̃i “
ˆ
1
0

˙
ϕ̃jpuq “ ϕjpxpuqq “ u2,∇ϕ̃j “

ˆ
0
1

˙

Stiffness matrix - 3D, 3/4
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Putting all the pieces together we derive
ż

Tijk

x∇ψippq,∇ψjppqydp “
ż

Tref

xg´1∇ψ̃ipuq, g´1∇ψ̃jpuqyg
a
det gdu

“
ż

Tref

x
ˆ
1
0

˙
,

ˆ }e2}2 ´xe1, e2y
´xe1, e2y }e1}2

˙ ˆ
0
1

˙
y 1?

det g
du

“ ´1

2

xe1, e2y?
det g

“ ´1

2

}e1} }e2} cospαijq
}e1} }e2} sinpαijq

“ ´1

2
cotpαijq

and analogously
ş
Tijk

x∇ψippq,∇ψjppqydp “ ´1
2 cotpβijq.

vk

v1
k

αij

βij

Stiffness matrix - 3D, 4/4
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With the same approach one can also derive the entries Sii on the diagonal of the
stiffness matrix. Eventually all the entries are given by

Sij “

$
’&
’%

´ cotpαijq`cotpβijq
2 if pi, jq an edge

´ ř
k‰i Sik if i “ j

0 otherwise

The stiffness matrix is sometimes also called cotangens matrix.

■ symmetric
■ positiv-semi-definit
■ constant vector corresponds to 0 eigenvalue

Discrete Dirichlet energy
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The idea was to find functions ϕi : M Ñ R that are orthonormal
i.e.xϕi, ϕjyL2pMq “ δij and minimize the Dirichlet energy

EDpϕiq “
ż

M
x∇ϕi,∇ϕiydp “

ż

M
}∇ϕi}2 dp.

In the discrete case this corresponds to the optimization problem

min ϕϕϕT
i Sϕϕϕi s.t. ϕϕϕT

i Mϕϕϕj “ δij

It can be shown that these functions arise as the solutions to the generalized
eigenvalue problem

λiMϕϕϕi “ Sϕϕϕi

and their energies correspond to the eigenvalues λi.

Example
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■ Euclidean embeddings such as tϕiui can also be seen as multidimensional descriptors
■ while M and S are intrinsic, the eigendecomposition has the usual problem of

ambiguities
■ we will identify L “ M´1S as the discrete Laplace Beltrami operator


