

We have yet not defined what the gradient of a function $f: \mathcal{M} \rightarrow \mathbb{R}$ is. We do know gradients of functions defined on Euclidean domains. For a function $\tilde{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ the gradient is given by

$$
\nabla \tilde{f}=\binom{\frac{\partial \tilde{f}}{\partial u_{1}}}{\frac{\partial f}{\partial u_{1}}}
$$

IN2238 - Analysis of Three-Dimensional Shapes

14. Stiffness matrix -9 / 22

Gradient on manifold Recap Stiffness matrix

Let $f: \mathcal{M} \rightarrow \mathbb{R}$ be a differentiable function. The gradient $\nabla f(p)$ at $p \in \mathcal{M}$ is the unique element of $T_{p} \mathcal{M}$ such that

$$
\langle\nabla f(p), \vec{v}\rangle=d f(p)[v]
$$

In local coordinates

Let $p=x(u)$. Given $\nabla \tilde{f}(u) \in \mathbb{R}^{2}$ and the first fundamental form $g(u) \in \mathbb{R}^{2 \times 2}$, the coefficients $\alpha \in \mathbb{R}^{2}$ (local coordinates) of $\nabla f=D x \cdot \alpha \in T_{p} \mathcal{M}$ are given by

$$
\alpha=g^{-1}(u) \nabla \tilde{f}(u)
$$

Let $\beta \in \mathbb{R}^{2}$ be the coefficients of $\vec{v} \in T_{p} \mathcal{M}$. Then

$$
d f(p)[\vec{v}]=\langle\nabla \tilde{f}(u), \beta\rangle=\langle\alpha, \beta\rangle_{g(u)}=\langle\nabla f, \vec{v}\rangle
$$

Notice that this in general is a different vector then $\nabla \tilde{f}(u)$!

IN2238 - Analysis of Three-Dimensional Shapes

$$
E_{D}\left(\varphi_{i}\right)=\int_{\mathcal{M}}\left\langle\nabla \varphi_{i}, \nabla \varphi_{i}\right\rangle d p=\int_{\mathcal{M}}\left\|\nabla \varphi_{i}\right\|^{2} d p
$$

Given two arbitrary functions $f, g: \mathcal{M} \rightarrow \mathbb{R}$ we can also consider

$$
\int_{\mathcal{M}}\langle\nabla f, \nabla g\rangle d p
$$

Let $f(x)=\sum_{i=1}^{V} \mathbf{f}_{i} \psi_{i}(p)$ and $g=\sum_{j=1}^{V} \mathbf{g}_{j} \psi_{j}(p)$ now be PL functions defined on a triangular mesh (ψ_{i} being hat functions).

$$
\int_{\mathcal{M}}\langle\nabla f, \nabla g\rangle d p=\sum_{i} \sum_{j} \mathbf{f}_{i} \mathbf{g}_{j} \underbrace{\int_{\mathcal{M}}\left\langle\nabla \psi_{i}, \nabla \psi_{j}\right\rangle d p}_{\mathbf{S}_{i j}}=\mathbf{f}^{T} \mathbf{S} \mathbf{g}
$$

The symmetric (but not pos. definit!) matrix \mathbf{S} is called stiffness matrix.

parametrization of $e_{i j}=\left(v_{i}, v_{j}\right)$ from
reference interval $[0,1]$
$x(t)=(1-t) v_{i}+t v_{j}$
$g(t)=\left\|e_{i j}\right\|^{2}$

$$
\begin{aligned}
\int_{e_{i j}}\left\langle\nabla \psi_{i}(p), \nabla \psi_{j}(p)\right\rangle d p & =\int_{0}^{1}\left\langle g^{-1} \nabla \psi_{i}(x(t)), g^{-1} \nabla \psi_{j}(x(t))\right\rangle_{g} \sqrt{g} d t \\
& =\int_{0}^{1} \frac{1}{\left\|e_{i j}\right\|^{2}}\langle-1,1\rangle\left\|e_{i j}\right\| d t \\
& =-\frac{1}{\left\|e_{i j}\right\|}
\end{aligned}
$$

Geometric meaning of the gradient

- the vector that points in the direction of steepest increase of \tilde{f}
- its length measures the strength of increase
- relationship with the differential of \tilde{f} :

$$
\begin{array}{r}
d \tilde{f}(u)(\vec{v})=\lim _{h \rightarrow 0} \frac{\tilde{f}(u+h \vec{v})-\tilde{f}(u)}{h} \\
=\left.\frac{d}{d h} \tilde{f}(u+h \vec{v})\right|_{h=0} \\
=\langle\nabla \tilde{f}(u), \vec{v}\rangle
\end{array}
$$

IN2238 - Analysis of Three-Dimensional Shapes

Stiffness matrix

We will now derive expressions for the entries of the stiffness matrix (first in 2D).

$$
\mathbf{S}_{i j}=\int_{\mathcal{M}}\left\langle\nabla \psi_{i}(p), \nabla \psi_{j}(p)\right\rangle d p= \begin{cases}0 & \text { if }\left(v_{i}, v_{j}\right) \notin \mathcal{E} \\ -\frac{1}{\left\|e_{i j}\right\|} & \text { if }\left(v_{i}, v_{j}\right) \in \mathcal{E} \\ \sum_{k \in \mathcal{N}(i)} \frac{1}{\left\|e_{i k}\right\|} & \text { if } i=j\end{cases}
$$

In the special case where all the edges have the same length $e_{i j}=s$, the stiffness matrix is given by:

$$
\mathbf{S}=\frac{1}{s}\left(\begin{array}{ccccccc}
2 & -1 & 0 & & & & -1 \\
-1 & 2 & -1 & 0 & & & 0 \\
0 & -1 & 2 & -1 & 0 & & 0 \\
\vdots & & & & & & \vdots \\
0 & & & & & \ddots & -1 \\
-1 & 0 & \ldots & & & -1 & 2
\end{array}\right)
$$

We want to derive $\mathbf{S}_{i j}=\int_{\mathcal{M}}\left\langle\nabla \psi_{i}(p), \nabla \psi_{j}(p)\right\rangle d p$ for triangular meshes. Due to the localized support of the basis functions we observe:

$$
\mathbf{S}_{i j}= \begin{cases}0 & \text { if }\left(v_{i}, v_{j}\right) \notin \mathcal{E} \\ \int_{T_{i j k}}\left\langle\nabla \psi_{i}(p), \nabla \psi_{j}(p)\right\rangle d p+\int_{T_{i j k^{\prime}}}\left\langle\nabla \psi_{i}(p), \nabla \psi_{j}(p)\right\rangle d p & \text { if }\left(v_{i}, v_{j}\right) \in \mathcal{E} \\ \sum_{i \in T} \int_{T}\left\|\nabla \psi_{i}(p)\right\|^{2} d p & \text { if } i=j\end{cases}
$$

where k and k^{\prime} are such that $\left(v_{k}, v_{i}, v_{j}\right),\left(v_{k}^{\prime}, v_{i}, v_{j}\right) \in \mathcal{F}$ and the sum in the third case is over all triangles T having v_{i} as a vertex.

Putting all the pieces together we derive

$$
\int_{T_{i j k}}\left\langle\nabla \psi_{i}(p), \nabla \psi_{j}(p)\right\rangle d p=\int_{T_{r e f}}\left\langle g^{-1} \nabla \tilde{\psi}_{i}(u), g^{-1} \nabla \tilde{\psi}_{j}(u)\right\rangle_{g} \sqrt{\operatorname{det} g} d u
$$

$$
\begin{aligned}
& =\int_{T_{\text {ref }}}\left\langle\binom{ 1}{0},\left(\begin{array}{cc}
\left\|e_{2}\right\|^{2} & -\left\langle e_{1}, e_{2}\right\rangle \\
-\left\langle e_{1}, e_{2}\right\rangle & \left\|e_{1}\right\|^{2}
\end{array}\right)\binom{0}{1}\right\rangle \frac{1}{\sqrt{\operatorname{det} g}} d u \\
& =-\frac{1}{2} \frac{\left\langle e_{1}, e_{2}\right\rangle}{\sqrt{\operatorname{det} g}}=-\frac{1}{2} \frac{\left\|e_{1}\right\|\left\|e_{2}\right\| \cos \left(\alpha_{i j}\right)}{\left\|e_{1}\right\|\left\|e_{2}\right\| \sin \left(\alpha_{i j}\right)} \\
& =-\frac{1}{2} \cot \left(\alpha_{i j}\right)
\end{aligned}
$$

and analogously $\int_{T_{i j k}}\left\langle\nabla \psi_{i}(p), \nabla \psi_{j}(p)\right\rangle d p=-\frac{1}{2} \cot \left(\beta_{i j}\right)$.

IN2238 - Analysis of Three-Dimensional Shapes

The idea was to find functions $\varphi_{i}: \mathcal{M} \rightarrow \mathbb{R}$ that are orthonormal i.e. $\left\langle\varphi_{i}, \varphi_{j}\right\rangle_{L^{2}(\mathcal{M})}=\delta_{i j}$ and minimize the Dirichlet energy

$$
E_{D}\left(\varphi_{i}\right)=\int_{\mathcal{M}}\left\langle\nabla \varphi_{i}, \nabla \varphi_{i}\right\rangle d p=\int_{\mathcal{M}}\left\|\nabla \varphi_{i}\right\|^{2} d p
$$

In the discrete case this corresponds to the optimization problem

$$
\min \quad \boldsymbol{\varphi}_{i}^{T} \mathbf{S} \boldsymbol{\varphi}_{i} \quad \text { s.t. } \boldsymbol{\varphi}_{i}^{T} \mathbf{M} \boldsymbol{\varphi}_{j}=\delta_{i j}
$$

It can be shown that these functions arise as the solutions to the generalized eigenvalue problem

$$
\lambda_{i} \mathbf{M} \varphi_{i}=\mathbf{S} \varphi_{i}
$$

and their energies correspond to the eigenvalues λ_{i}.

Next we derive $\int_{T_{i j k}}\left\langle\nabla \psi_{i}(p), \nabla \psi_{j}(p)\right\rangle d p$.
Lets first recap the parametrization of the triangle $T_{i j k}$ via

$$
x(u)=v_{k}+u_{1} \underbrace{\left(v_{i}-v_{k}\right)}_{e_{1}}+u_{2} \underbrace{\left(v_{j}-v_{k}\right)}_{e_{2}}
$$

For the first fundamental form and it inverse this yields

$(0,0)$

$(1,0)$

$$
g(u)=\left(\begin{array}{cc}
\left\|e_{1}\right\|^{2} & \left\langle e_{1}, e_{2}\right\rangle \\
\left\langle e_{1}, e_{2}\right\rangle & \left\|e_{2}\right\|^{2}
\end{array}\right) \quad g^{-1}(u)=\frac{1}{\operatorname{det} g}\left(\begin{array}{cc}
\left\|e_{2}\right\|^{2} & -\left\langle e_{1}, e_{2}\right\rangle \\
-\left\langle e_{1}, e_{2}\right\rangle & \left\|e_{1}\right\|^{2}
\end{array}\right)
$$

Moreover

$$
\tilde{\varphi}_{i}(u)=\varphi_{i}(x(u))=u_{1}, \nabla \tilde{\varphi}_{i}=\binom{1}{0} \quad \tilde{\varphi}_{j}(u)=\varphi_{j}(x(u))=u_{2}, \nabla \tilde{\varphi}_{j}=\binom{0}{1}
$$

IN2238 - Analysis of Three-Dimensional Shapes
14. Stiffness matrix - 18 / 22

With the same approach one can also derive the entries $\mathbf{S}_{i i}$ on the diagonal of the stiffness matrix. Eventually all the entries are given by

$$
\mathbf{S}_{i j}= \begin{cases}-\frac{\cot \left(\alpha_{i j}\right)+\cot \left(\beta_{i j}\right)}{2} & \text { if }(i, j) \text { an edge } \\ -\sum_{k \neq i} \mathbf{S}_{i k} & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

The stiffness matrix is sometimes also called cotangens matrix.

- symmetric
- positiv-semi-definit
- constant vector corresponds to 0 eigenvalue

IN2238 - Analysis of Three-Dimensional Shapes

- Euclidean embeddings such as $\left\{\varphi_{i}\right\}_{i}$ can also be seen as multidimensional descriptors
- while \mathbf{M} and \mathbf{S} are intrinsic, the eigendecomposition has the usual problem of ambiguities
■ we will identify $\mathbf{L}=\mathbf{M}^{-1} \mathbf{S}$ as the discrete Laplace Beltrami operator

