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14. Stiffness matrix

Recap

2 /22
3 /22

Shape matching

Our goal is to assign each point on the source shape a corresponding point on the target shape. Although a diffeomorphic (bijective and diff'able in both
directions) mapping is desired, most of the approaches we discuss will not even guarantee injective mappings (remember nearest neighbors from ICP).
Eventually we deal with discretized shapes, mostly triangular meshes. The correspondence will then be a mapping between the vertices.
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Isometries

A mapping ® : M — N between two shapes (manifolds) is an isometry if

dpm(z,y) = dpy(®(z), ®(y)) for all points x,y € M.

If such a mapping exists M and A are called isometric. Many shape matching approaches assume that the shapes to be matched are (nearly) isometric.
The task then becomes to find the (almost-)isometry ®.
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Euclidean isometry

Intrinsic isometry Euclidean isometry
Two different metric spaces Part of the same metric space

Last week we have seen two methods (ICP and PCA) that can be used to find a correspondence between shapes that are isometric with respect to the
Euclidean metric (rigid alignment).
Today we discuss a way to transform the more difficult problem of intrinsic isometries into a rigid alignment problem.
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Canonical forms
The main idea is to transform the two shapes to be matched into canonical forms such that the two canonical forms are isometric with respect to the

euclidean metric.
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Dirichlet energy

As an alternative to MDS a popular approach to embed a shape M into a Euclidean space is by finding functions ¢; : M — R that are orthonormal
i.e{pi, pj)r2(m) = 0ij and minimize the Dirichlet energy

En(e:) = f <wi,wi>dp=f Vil dp.
M M

The Dirichlet energy measures how variable a function is. Let M = (—m,m), then

Ep(cos(kx)) = V cos(kx)|” dx = k:2 sin?(kz)dx = k> E — sm(2kx) = k>
(cos(kz)) = | [V cos( )I® (k)
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Gradient

We have yet not defined what the gradient of a function f: M — R is. We do know gradients of functions defined on Euclidean domains. For a function

_ (oL
ur

f : R? - R the gradient is given by
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Geometric meaning of the gradient

Geometric meaning of the gradient

B the vector that points in the direction of steepest increase of f
B its length measures the strength of increase
W relationship with the differential of f:

af(w)() = lim flut h’i) — f(w)

= <Vf(u), 17> .v/'\Vf Uy
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Gradient on manifold

Let f: M — R be a differentiable function. The gradient V f(p) at p € M is the unique element of 7, M such that

Vf(p), ) = df (p)[v]

In local coordinates
Let p = x(u). Given V f(u) € R? and the first fundamental form g(u) € R?>*?, the coefficients a € R? (local coordinates) of Vf = Dz - a € T,M are given

by
a =g (w)Vf(u)
Let 8 € R? be the coefficients of ¥ € T, M. Then
df (p)[7] = (Vf(u), B) = L. Bg(u) = V1, ¥

Notice that this in general is a different vector then V f(u)!
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Stiffness matrix
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Stiffness matrix

Given two arbitrary functions f,g: M — R we can also consider

| 159
M

En(e:) = f <wi,wi>dp=f Vil dp.
M M

Let f(x) = ZYZI fivi(p) and g = Z;;l g;1;j(p) now be PL functions defined on a triangular mesh (v; being hat functions).

_ o . . _¢T
fM<Vf, Vgydp = g;fzgg fM<vwz,vwg>dzj f7'Sg

The symmetric (but not pos. definit!) matrix S is called stiffness matrix.

Sij
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Stiffness matrix - 2D, 1/3

We will now derive expressions for the entries of the stiffness matrix (first in 2D).

S T T

arclength parametrization

T

arclength parametrization
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Stiffness matrix - 2D, 2/3

parametrization of e;; = (v;,v;) from

Pzox Yo

reference interval [0, 1]
z(t) = (1 —t)v; + tv;

2
9(t) = lless]

1
|| w1 vus00d0 = [ o7 T 0state), g7 T a0y v
1
- [ el
o Tew]
_ 1
e
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Stiffness matrix - 2D, 3/3

0 If (1}1',1}]') ¢ (9
Sij = fMWwi(p),Wj(p»dp = ool if (v5,0;) €&

ken) Ten 1 =1

In the special case where all the edges have the same length e;; = s, the stiffness matrix is given by:

2 -1 0 -1

-1 2 -1 0 0

110 -1 2 -10 0
S =_
s

0 -1

-1 0 -1 2
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Stiffness matrix - 3D, 1/4

We want to derive S;; = SM<VwZ-(p), V;(p))dp for triangular meshes. Due to the localized support of the basis functions we observe:

0 if (UZ‘, ’Uj) ¢ 5
Sij = 1 32, Vip), Vo (0)ydp + T, (V0ip), Vb (p)ydp i (viyvj) € €
Sier 7 IV9i(0)|* dp if i = j

where k and k&’ are such that (vi, vs,v}), (v), v5,v;) € F and the sum in the third case is over all triangles T" having v; as a vertex.

vy, \VJ

Uk
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Stiffness matrix - 3D, 2/4
Next we derive STijk<V¢i(p), Vi (p))dp.

(0,1)
Lets first recap the parametrization of the triangle Tj;;, via z(u) = vk + w1 (v; — vg) +ug (v — vk)
For the first fundamental form and it inverse this yields . €2 (0,0 (1,0)
e ? <€17€2>> -1 1 < leal* e, 62>>
u) = u) = ——
0= (e ¢ =Gy \ereny  Jerl?
Moreover
- - 1 - - 0
B = (o) =, ¥ = () i(0) = (o) = 2. 98, = ()
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Stiffness matrix - 3D, 3/4

Putting all the pieces together we derive

JT” (Vbi(p), Vib;(p)ydp = L (g7 Vi (u), g~ 1V (u)dgr/det gdu

L) (e ) () e

1der,e2)  1le] [e2]| cos(ay)

© o 2detg 2 erfea]sin(ay)

1
=5 cot(a;;)

vy, V

Uk

and analogously STM<V% (p), Voj(p)ydp = —3 cot(Bi;).
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Stiffness matrix - 3D, 4/4

With the same approach one can also derive the entries S;; on the diagonal of the stiffness matrix. Eventually all the entries are given by

——COt(aij);COt(B”) if (,7) an edge
Sij = — Dkwi Sik ifi =7
0 otherwise
The stiffness matrix is sometimes also called cotangens matrix.
B symmetric
B positiv-semi-definit
B constant vector corresponds to O eigenvalue
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Discrete Dirichlet energy

The idea was to find functions ¢; : M — R that are orthonormal i.e.{;, ¢;)r2(m) = di; and minimize the Dirichlet energy

Ep(pi) = J Vi, Vi ydp = f |Vei]* dp.
M M
In the discrete case this corresponds to the optimization problem
min ] S; st. @] My; = 0

It can be shown that these functions arise as the solutions to the generalized eigenvalue problem

AiMy; = Sgp;

and their energies correspond to the eigenvalues \;.
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Example

B Euclidean embeddings such as {(;}; can also be seen as multidimensional descriptors
B while M and S are intrinsic, the eigendecomposition has the usual problem of ambiguities
B we will identify L = M!S as the discrete Laplace Beltrami operator
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