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Laplace Beltrami Operator

Let M be a manifold and f € H'(M) a function. We define Af : M — R via

jM Afhdp = — JM<W, Vhydp

for all test functions h € CX(M). A is called the Laplace Betrami operator

(LBO).

W imagine H!(M) as the space of piecewise differentiabe functions f such that
SV SV fdp < o0

B in fact it is a so called Sobolev space, defined using the concept of weak derivatives

B e CP(M) basically means that h € C* and it (and all its derivatives) vanish at the
boundary of M

B the manifolds we consider don't come with boundaries, however this definition is
applicable to more general scenarios

B the LBO is a linear operator
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LBO.in local coordinates

To simplify the derivations assume that the manifold M can be parametrized with a single
parametrization x : U — M, such that U does not have a boundary. In fact, a manifold
without boundary must be composed of multiple charts but this technical detail will
detract from the main information.

f (Vf, Vhydp = f Vfg’IVﬁ\/detgdu
M 28

) Vv det g(u)du

Discrete LBO

A discrete version of the LBO will be a linear operator from the space of piecewise
linear functions to itself: L : PL(M) — PL(M). We know that we can write such
an operator as a matrix L € RY*Y (depending on the choice of basis functions).

Let f = > f40;(z). We are looking for a function Af = p = ) piti(x), such that

(p,hy = <V f,Vh) Vh = hii(x)
We have derived expressions for both products (mass- and stiffness- matrix):

hTMp = —nT'sf vheRY

Thus the coefficients p of Af are given by p = —M~!Sf.
L = —M~!S is called discrete Laplace Beltrami operator.
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Tninn

Laplace Beltrami Operator

Example:: Euclidean space

Lets consider f € C%(R) and h e CX(R):
J (Vf,Vhydr = f f(x)l (x)dz
R R
- [ £y e+ [ @h)]),
R ——
Af(x) =0

Next we consider f € C?(R?) and h € C*(R?):
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I

For a function f: M — R defined on a n — dimensional manifold one can derive
an expression of Af in local coordinates:

LBO. in local coordinates

Af(a(w) = - Wm > m( agi?)\/_detg(u_)>

where as usual f = f oz and ¢ (u) are the entries of g~!(u).

W it shows that the LBO is an intrinsic operator
B if g is the identity matrix, the formula boils down to the one for the euclidean
case

0 f(w)
() = 2 Ou;0u;
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Helmholtz equation

The Laplacian is a formally self-adjoint operator
(Af by = =(Vf,Vh) =, Ahy
As a consequence the eigenvalue problem (Helmholtz equation)
Api = Nip;

satisfies:

B )\ eR, in fact we can order them 0 =X\ > o= A3>... > —©
W eigenfunctions to different eigenvalues are orthogonal (i, ¥;)r2(rr) = 0.
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Discrete Helmholtz equation

Dirichlet energy and eigenfunctions

We can rewrite the Helmholtz equation as an equivalent generalized eigenvalue
problem

Ap; = Aigi < Lp; = Xip; < —Sp; = AiMep;

Because M is symmetric positive definit and S is symmetric, L is symmetric with
respect to the M-inner product:

(Lf, gm = FTSM Mg = fTMM~!Sg = (f, Lg)m

The eigenvectors of L can therefore be chosen to be orthonormal with respect to
the M-inner product. If we collect all of them in a matrix ® this reads

"M =1
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Integral of ieigenfunctions
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Let ¢; : M — R be a (normalized) eigenfunction with corresponding eigenvalue \;
and consider the Dirichlet energy

f IVeil* = f Vi, Vi) = —j 0ilNp; = —/\iJ Pipi = —X;
M M M M

This provides us with a nice characterization of the eigenvalues in terms of the
corresponding eigenfunctions.

In particular from the above relation we see that if A\; = 0, then ¢; must be a
constant function. Further \; = 0 is always an eigenvalue of A, since Af = 0f for
any constant function f.

All other eigenvalues are strictly negative. Sometimes the LBO (or the Helmholtz
equation) is defined with a minus, such that all eigenvalues are positive.
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Change of basis

For every function f € H'(M) we observe

JMAf:JMlAf:—fM<V1,Vf>:0

This implies that for every eigenfunction ¢; with corresponding eigenvalue \; # 0:

1
f w=;j Ap; =0
M i IM

The eigenfunction g with corresponding eigenvalue Ao = 0 is constant,
©o(p) = c. Due to the normalization we get

1

_ 2 _ 2 PR
1—fMgo(p)dp—carea(M) c i\/m
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Due to the orthogonality of eigenfunctions, we can write every function
f € L?(M) as a linear combination

fla) = Y apil@) = Yl fronei@)f =Y (Epomp = 2TME
i=1 i=1 i

= +c1 + Ca +c3 +

(L (L

constant Fiedler
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Invarianceiunder isometries

The Laplace Beltrami operator is an intrinsic op- ¢
erator and therefore invariant to isometric defor- o N
mations. E

However the eigenfunctions are not uniquely de- a1

fined (signflips, higher dimensional eigenspaces).
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Influence’ of scaling
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_Weyl’s law
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Spectral descriptors

What happens to the eigenvalues and eigenfunctions when we simply rescale a
shape?
Weyls law is already suggesting us that something is going to change.
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We will consider different descriptors that rely on the LBO.
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