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Laplace Beltrami Operator
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Let M be a manifold and f P H1pMq a function. We define ∆f : M Ñ R via

ż

M
∆fhdp “ ´

ż

M
x∇f,∇hydp

for all test functions h P C8
c pMq. ∆ is called the Laplace Betrami operator

(LBO).

■ imagine H1pMq as the space of piecewise differentiabe functions f such thatş
Mx∇f,∇fydp ă 8

■ in fact it is a so called Sobolev space, defined using the concept of weak derivatives
■ h P C8

c pMq basically means that h P C8 and it (and all its derivatives) vanish at the
boundary of M

■ the manifolds we consider don’t come with boundaries, however this definition is
applicable to more general scenarios

■ the LBO is a linear operator

Example: Euclidean space
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Lets consider f P C2pRq and h P C8
c pRq:

ż

R
x∇f,∇hydx “

ż

R
f 1pxqh1pxqdx

“ ´
ż

R
f2pxqloomoon
∆fpxq

hpxqdx` “
f 1pxqhpxq‰8

´8loooooooomoooooooon
“0

Next we consider f P C2pR2q and h P C8
c pR2q:

ż

R2

x∇f,∇hydx “
ż

R

ż

R

Bf
Bx1

Bh
Bx1 ` Bf

Bx2
Bh
Bx2 dx1dx2

“
ż

R

ż

R

Bf
Bx1

Bh
Bx1 dx1dx2 `

ż

R

ż

R

Bf
Bx2

Bh
Bx2 dx2dx1

“ ´
ż

R2

p B2f

Bx1Bx1 ` B2f

Bx2Bx2 q
looooooooooomooooooooooon

∆fpxq

hpxqdx

LBO in local coordinates
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To simplify the derivations assume that the manifold M can be parametrized with a single
parametrization x : U Ñ M, such that U does not have a boundary. In fact, a manifold
without boundary must be composed of multiple charts but this technical detail will
detract from the main information.

ż

M
x∇f,∇hydp “

ż

U

∇f̃ g´1∇h̃
a
det gdu

“
ż

U

˜
2ÿ

i,j“1

Bf̃
Bui g

ij Bh̃
Buj

¸
a
det gpuqdu

“
ż

U

˜
2ÿ

i,j“1

a
det gpuq Bf̃

Bui g
ij Bh̃

Buj

¸
du

“ ´
ż

U

´
2ÿ

i,j“1

B
Buj

˜
a
det gpuq Bf̃

Bui g
ij

¸
h̃du

“ ´
ż

U

´ 1a
detgpuq

2ÿ

i,j“1

B
Buj

˜
a
detgpuq Bf̃

Bui
gij

¸
h̃

a
det gpuqdu

LBO in local coordinates
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For a function f : M Ñ R defined on a n´ dimensional manifold one can derive
an expression of ∆f in local coordinates:

∆fpxpuqq “ ´ 1a
det gpuq

nÿ

i,j“1

B
Bui

˜
gijpuqBf̃puq

Buj
a

det gpuq
¸

where as usual f̃ “ f ˝ x and gijpuq are the entries of g´1puq.
■ it shows that the LBO is an intrinsic operator
■ if g is the identity matrix, the formula boils down to the one for the euclidean

case

∆fpxpuqq “
nÿ

i“1

B2f̃puq
BuiBui

Discrete LBO
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A discrete version of the LBO will be a linear operator from the space of piecewise
linear functions to itself: L : PLpMq Ñ PLpMq. We know that we can write such
an operator as a matrix L P RV ˆV (depending on the choice of basis functions).
Let f “ ř

fiψipxq. We are looking for a function ∆f “ ρ “ ř
ρρρiψipxq, such that

xρ, hy “ ´x∇f,∇hy @h “
ÿ

hiψipxq

We have derived expressions for both products (mass- and stiffness- matrix):

hTMρρρ “ ´hTSf @h P RV

Thus the coefficients ρρρ of ∆f are given by ρρρ “ ´M´1Sf .
L “ ´M´1S is called discrete Laplace Beltrami operator.

Helmholtz equation
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The Laplacian is a formally self-adjoint operator

x∆f, hy “ ´x∇f,∇hy “ xf,∆hy
As a consequence the eigenvalue problem (Helmholtz equation)

∆ϕi “ λiϕi

satisfies:

■ λi P R, in fact we can order them 0 “ λ1 ą λ2 ě λ3 ě . . . Ñ ´8
■ eigenfunctions to different eigenvalues are orthogonal xϕi, ϕjyL2pMq “ 0.



Discrete Helmholtz equation
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We can rewrite the Helmholtz equation as an equivalent generalized eigenvalue
problem

∆ϕi “ λiϕi ô Lϕi “ λiϕi ô ´Sϕi “ λiMϕi

Because M is symmetric positive definit and S is symmetric, L is symmetric with
respect to the M-inner product:

xLf ,gyM “ fTSM´1Mg “ fTMM´1Sg “ xf ,LgyM
The eigenvectors of L can therefore be chosen to be orthonormal with respect to
the M-inner product. If we collect all of them in a matrix Φ this reads

ΦTMΦ “ I

Dirichlet energy and eigenfunctions
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Let ϕi : M Ñ R be a (normalized) eigenfunction with corresponding eigenvalue λi
and consider the Dirichlet energy

ż

M
}∇ϕi}2 “

ż

M
x∇ϕi,∇ϕiy “ ´

ż

M
ϕi∆ϕi “ ´λi

ż

M
ϕiϕi “ ´λi

This provides us with a nice characterization of the eigenvalues in terms of the
corresponding eigenfunctions.
In particular from the above relation we see that if λi “ 0, then ϕi must be a
constant function. Further λi “ 0 is always an eigenvalue of ∆, since ∆f “ 0f for
any constant function f .
All other eigenvalues are strictly negative. Sometimes the LBO (or the Helmholtz
equation) is defined with a minus, such that all eigenvalues are positive.

Integral of eigenfunctions
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For every function f P H1pMq we observe

ż

M
∆f “

ż

M
1∆f “ ´

ż

M
x∇1,∇fy “ 0

This implies that for every eigenfunction ϕi with corresponding eigenvalue λi ‰ 0:

ż

M
ϕi “ 1

λi

ż

M
∆ϕi “ 0

The eigenfunction ϕ0 with corresponding eigenvalue λ0 “ 0 is constant,
ϕ0ppq “ c. Due to the normalization we get

1 “
ż

M
ϕ2ppqdp “ c2areapMq ô c “ ˘ 1a

areapMq

Change of basis
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Due to the orthogonality of eigenfunctions, we can write every function
f P L2pMq as a linear combination

fpxq “
8ÿ

i“1

ciϕipxq “
8ÿ

i“1

xf, ϕiyL2ϕipxqf “
ÿ

i

xf ,ϕϕϕiyMϕϕϕi “ ΦΦΦΦΦΦTMf

Invariance under isometries
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The Laplace Beltrami operator is an intrinsic op-
erator and therefore invariant to isometric defor-
mations.
However the eigenfunctions are not uniquely de-
fined (signflips, higher dimensional eigenspaces).

Weyl’s law

IN2238 - Analysis of Three-Dimensional Shapes 15. Laplace Beltrami Operator – 14 / 16

|λj | „ π

areapMqj

Influence of scaling
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What happens to the eigenvalues and eigenfunctions when we simply rescale a
shape?
Weyls law is already suggesting us that something is going to change.

Spectral descriptors
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We will consider different descriptors that rely on the LBO.


