Analysis of 3D Shapes (IN2238)

Frank R. Schmidt
Matthias Vestner

Summer Semester 2017

15. Laplace Beltrami Operator

Let \mathcal{M} be a manifold and $f \in H^{1}(\mathcal{M})$ a function. We define $\Delta f: \mathcal{M} \rightarrow \mathbb{R}$ via

$$
\int_{\mathcal{M}} \Delta f h d p=-\int_{\mathcal{M}}\langle\nabla f, \nabla h\rangle d p
$$

for all test functions $h \in C_{c}^{\infty}(\mathcal{M}) . \Delta$ is called the Laplace Betrami operator (LBO).

- imagine $H^{1}(\mathcal{M})$ as the space of piecewise differentiabe functions f such that $\int_{\mathcal{M}}\langle\nabla f, \nabla f\rangle d p<\infty$
■ in fact it is a so called Sobolev space, defined using the concept of weak derivatives
- $h \in C_{c}^{\infty}(\mathcal{M})$ basically means that $h \in C^{\infty}$ and it (and all its derivatives) vanish at the boundary of \mathcal{M}
- the manifolds we consider don't come with boundaries, however this definition is applicable to more general scenarios
- the LBO is a linear operator

To simplify the derivations assume that the manifold \mathcal{M} can be parametrized with a single parametrization $x: U \rightarrow \mathcal{M}$, such that U does not have a boundary. In fact, a manifold without boundary must be composed of multiple charts but this technical detail will detract from the main information.

$$
\begin{aligned}
\int_{\mathcal{M}}\langle\nabla f, \nabla h\rangle d p & =\int_{U} \nabla \tilde{f} g^{-1} \nabla \tilde{h} \sqrt{\operatorname{det} g} d u \\
& =\int_{U}\left(\sum_{i, j=1}^{2} \frac{\partial \tilde{f}}{\partial u_{i}} g^{i j} \frac{\partial \tilde{h}}{\partial u_{j}}\right) \sqrt{\operatorname{det} g(u)} d u \\
& =\int_{U}\left(\sum_{i, j=1}^{2} \sqrt{\operatorname{det} g(u)} \frac{\partial \tilde{f}}{\partial u_{i}} g^{i j} \frac{\partial \tilde{h}}{\partial u_{j}}\right) d u \\
& =-\int_{U}-\sum_{i, j=1}^{2} \frac{\partial}{\partial u_{j}}\left(\sqrt{\operatorname{det} g(u)} \frac{\partial \tilde{f}}{\partial u_{i}} g^{i j}\right) \tilde{h} d u \\
& =-\int_{U}-\frac{1}{\sqrt{\operatorname{det} \mathbf{g (u)}}} \sum_{\mathrm{i}, \mathrm{j}=1}^{2} \frac{\partial}{\partial \mathbf{u}_{\mathbf{j}}}\left(\sqrt{\operatorname{det} \mathbf{g}(\mathbf{u})} \frac{\partial \tilde{\mathrm{f}}}{\partial \mathbf{u}_{\mathbf{i}}} \mathbf{g}^{\mathbf{i j}}\right) \tilde{h} \sqrt{\operatorname{det} g(u)} d u
\end{aligned}
$$

A discrete version of the LBO will be a linear operator from the space of piecewise linear functions to itself: $L: P L(\mathcal{M}) \rightarrow P L(\mathcal{M})$. We know that we can write such an operator as a matrix $\mathbf{L} \in \mathbb{R}^{V \times V}$ (depending on the choice of basis functions). Let $f=\sum \mathbf{f}_{i} \psi_{i}(x)$. We are looking for a function $\Delta f=\rho=\sum \boldsymbol{\rho}_{i} \psi_{i}(x)$, such that

$$
\langle\rho, h\rangle=-\langle\nabla f, \nabla h\rangle \quad \forall h=\sum \mathbf{h}_{i} \psi_{i}(x)
$$

We have derived expressions for both products (mass- and stiffness- matrix):

$$
\mathbf{h}^{T} \mathbf{M} \boldsymbol{\rho}=-\mathbf{h}^{T} \mathbf{S} \mathbf{f} \quad \forall \mathbf{h} \in \mathbb{R}^{V}
$$

Thus the coefficients ρ of Δf are given by $\rho=-\mathbf{M}^{-1} \mathbf{S f}$. $\mathbf{L}=-\mathbf{M}^{-1} \mathbf{S}$ is called discrete Laplace Beltrami operator.

Lets consider $f \in C^{2}(\mathbb{R})$ and $h \in C_{c}^{\infty}(\mathbb{R})$:

$$
\begin{aligned}
\int_{\mathbb{R}}\langle\nabla f, \nabla h\rangle d x & =\int_{\mathbb{R}} f^{\prime}(x) h^{\prime}(x) d x \\
& =-\int_{\mathbb{R}} \underbrace{f^{\prime \prime}(x)}_{\Delta f(x)} h(x) d x+\underbrace{\left[f^{\prime}(x) h(x)\right]_{-\infty}^{\infty}}_{=0}
\end{aligned}
$$

Next we consider $f \in C^{2}\left(\mathbb{R}^{2}\right)$ and $h \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$:

$$
\begin{aligned}
\int_{\mathbb{R}^{2}}\langle\nabla f, \nabla h\rangle d x & =\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\partial f}{\partial x_{1}} \frac{\partial h}{\partial x_{1}}+\frac{\partial f}{\partial x_{2}} \frac{\partial h}{\partial x_{2}} d x_{1} d x_{2} \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\partial f}{\partial x_{1}} \frac{\partial h}{\partial x_{1}} d x_{1} d x_{2}+\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\partial f}{\partial x_{2}} \frac{\partial h}{\partial x_{2}} d x_{2} d x_{1} \\
& =-\int_{\mathbb{R}^{2}} \underbrace{\left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}+\frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}\right.}_{\Delta f(x)}) h(x) d x
\end{aligned}
$$

IN2238 - Analysis of Three-Dimensional Shapes
15. Laplace Beltrami Operator - 4 / 16

For a function $f: \mathcal{M} \rightarrow \mathbb{R}$ defined on a n-dimensional manifold one can derive an expression of Δf in local coordinates:

$$
\Delta f(x(u))=-\frac{1}{\sqrt{\operatorname{det} g(u)}} \sum_{i, j=1}^{n} \frac{\partial}{\partial u_{i}}\left(g^{i j}(u) \frac{\partial \tilde{f}(u)}{\partial u_{j}} \sqrt{\operatorname{det} g(u)}\right)
$$

where as usual $\tilde{f}=f \circ x$ and $g^{i j}(u)$ are the entries of $g^{-1}(u)$.
■ it shows that the LBO is an intrinsic operator

- if g is the identity matrix, the formula boils down to the one for the euclidean case

$$
\Delta f(x(u))=\sum_{i=1}^{n} \frac{\partial^{2} \tilde{f}(u)}{\partial u_{i} \partial u_{i}}
$$

IN2238-Analysis of Three- Dimensional Shapes

Helmholtz equation

The Laplacian is a formally self-adjoint operator

$$
\langle\Delta f, h\rangle=-\langle\nabla f, \nabla h\rangle=\langle f, \Delta h\rangle
$$

As a consequence the eigenvalue problem (Helmholtz equation)

$$
\Delta \varphi_{i}=\lambda_{i} \varphi_{i}
$$

satisfies:

- $\lambda_{i} \in \mathbb{R}$, in fact we can order them $0=\lambda_{1}>\lambda_{2} \geqslant \lambda_{3} \geqslant \ldots \rightarrow-\infty$
- eigenfunctions to different eigenvalues are orthogonal $\left\langle\varphi_{i}, \varphi_{j}\right\rangle_{L^{2}(\mathcal{M})}=0$.

We can rewrite the Helmholtz equation as an equivalent generalized eigenvalue problem

$$
\Delta \varphi_{i}=\lambda_{i} \varphi_{i} \Leftrightarrow \mathbf{L} \boldsymbol{\varphi}_{i}=\boldsymbol{\lambda}_{i} \boldsymbol{\varphi}_{i} \Leftrightarrow-\mathbf{S} \boldsymbol{\varphi}_{i}=\boldsymbol{\lambda}_{i} \mathbf{M} \boldsymbol{\varphi}_{i}
$$

Because \mathbf{M} is symmetric positive definit and \mathbf{S} is symmetric, \mathbf{L} is symmetric with respect to the M-inner product:

$$
\langle\mathbf{L f}, \mathbf{g}\rangle_{\mathbf{M}}=\mathbf{f}^{T} \mathbf{S M}^{-1} \mathbf{M g}=\mathbf{f}^{T} \mathbf{M M}^{-1} \mathbf{S g}=\langle\mathbf{f}, \mathbf{L} \mathbf{g}\rangle_{\mathbf{M}}
$$

The eigenvectors of \mathbf{L} can therefore be chosen to be orthonormal with respect to the M-inner product. If we collect all of them in a matrix $\boldsymbol{\Phi}$ this reads

$$
\boldsymbol{\Phi}^{T} \mathbf{M} \boldsymbol{\Phi}=\boldsymbol{I}
$$

IN2238 - Analysis of Three-Dimensional Shapes

15. Laplace Beltrami Operator - 9 / 16

For every function $f \in H^{1}(\mathcal{M})$ we observe

$$
\int_{\mathcal{M}} \Delta f=\int_{\mathcal{M}} 1 \Delta f=-\int_{\mathcal{M}}\langle\nabla 1, \nabla f\rangle=0
$$

This implies that for every eigenfunction φ_{i} with corresponding eigenvalue $\lambda_{i} \neq 0$:

$$
\int_{\mathcal{M}} \varphi_{i}=\frac{1}{\lambda_{i}} \int_{\mathcal{M}} \Delta \varphi_{i}=0
$$

The eigenfunction φ_{0} with corresponding eigenvalue $\lambda_{0}=0$ is constant, $\varphi_{0}(p)=c$. Due to the normalization we get

$$
1=\int_{\mathcal{M}} \varphi^{2}(p) d p=c^{2} \operatorname{area}(\mathcal{M}) \quad \Leftrightarrow c= \pm \frac{1}{\sqrt{\operatorname{area}(\mathcal{M})}}
$$

IN2238-Analysis of Three Dimensional Shapes

The Laplace Beltrami operator is an intrinsic operator and therefore invariant to isometric deformations.
However the eigenfunctions are not uniquely defined (signflips, higher dimensional eigenspaces).

IN2z38 - Analysis of Three Dimensional Shapes

Influence of scaling
15. Lapplace Beltrami Operator - 13 / 16

 utitn

firiil iow in taxes

What happens to the eigenvalues and eigenfunctions when we simply rescale a shape?
Weyls law is already suggesting us that something is going to change.

Let $\varphi_{i}: \mathcal{M} \rightarrow \mathbb{R}$ be a (normalized) eigenfunction with corresponding eigenvalue λ_{i} and consider the Dirichlet energy

$$
\int_{\mathcal{M}}\left\|\nabla \varphi_{i}\right\|^{2}=\int_{\mathcal{M}}\left\langle\nabla \varphi_{i}, \nabla \varphi_{i}\right\rangle=-\int_{\mathcal{M}} \varphi_{i} \Delta \varphi_{i}=-\lambda_{i} \int_{\mathcal{M}} \varphi_{i} \varphi_{i}=-\lambda_{i}
$$

This provides us with a nice characterization of the eigenvalues in terms of the corresponding eigenfunctions.
In particular from the above relation we see that if $\lambda_{i}=0$, then φ_{i} must be a constant function. Further $\lambda_{i}=0$ is always an eigenvalue of Δ, since $\Delta f=0 f$ for any constant function f.
All other eigenvalues are strictly negative. Sometimes the LBO (or the Helmholtz equation) is defined with a minus, such that all eigenvalues are positive.

IN2238 - Analysis of Three-Dimensional Shapes

Change of basis

Due to the orthogonality of eigenfunctions, we can write every function $f \in L^{2}(\mathcal{M})$ as a linear combination
$f(x)=\sum_{i=1}^{\infty} c_{i} \varphi_{i}(x)=\sum_{i=1}^{\infty}\left\langle f, \varphi_{i}\right\rangle_{L^{2}} \varphi_{i}(x) \mathbf{f} \quad=\sum_{i}\left\langle\mathbf{f}, \varphi_{i}\right\rangle_{\mathbf{M}} \varphi_{i}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{T} \mathbf{M} \mathbf{f}$

IN2238 - Analysis of Three-Dimensional Shapes 15. Laplace Bettrami Operator - 12 / 16

$$
\left|\lambda_{j}\right| \sim \frac{\pi}{\operatorname{area}(\mathcal{M})} j
$$

IN2z38 - Analysis of Three-Dimensional Shapes
Spectral descriptors $\square \square \square \square$

We will consider different descriptors that rely on the LBO.

