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Laplace Beltrami Operator

Let M be a manifold and f € H'(M) a function. We define Af : M — R via
f Afhdp = —f (V f,Vhydp
M M

for all test functions h € C(M). A is called the Laplace Betrami operator (LBO).

imagine H' (M) as the space of piecewise differentiabe functions f such that §, (Vf,V f)dp < oo

in fact it is a so called Sobolev space, defined using the concept of weak derivatives

h € CX (M) basically means that h € C* and it (and all its derivatives) vanish at the boundary of M

the manifolds we consider don’t come with boundaries, however this definition is applicable to more general scenarios
the LBO is a linear operator
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Example: Euclidean space

Lets consider f € C?(R) and h € C*(R):
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Af(x) =0

Next we consider f € C?(R?) and h € C*(R?):
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LBO in local coordinates

To simplify the derivations assume that the manifold M can be parametrized with a single parametrization « : U — M, such that U does not have a boundary. In fact, a
manifold without boundary must be composed of multiple charts but this technical detail will detract from the main information.

J (Vf,Vhydp = J Vg 'Vhy/det gdu
M U
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LBO in local coordinates

For a function f : M — R defined on a n — dimensional manifold one can derive an expression of Af in local coordinates:

v P (A Gk )

where as usual f = f o and ¢ (u) are the entries of g~ (u).

B it shows that the LBO is an intrinsic operator
B if g is the identity matrix, the formula boils down to the one for the euclidean case
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Discrete LBO

Af =p=>pivi(x), such that

(p,hy = =V [, Vh)

We have derived expressions for both products (mass- and stiffness- matrix):

h"Mp = —hTsf

Thus the coefficients p of Af are given by p = —M~!Sf.
L = —M~!S is called discrete Laplace Beltrami operator.

A discrete version of the LBO will be a linear operator from the space of piecewise linear functions to itself: L : PL(M) — PL(M). We know that we can
write such an operator as a matrix L e RV*" (depending on the choice of basis functions). Let f = Y fj1;(x). We are looking for a function

Vh = > hi()

VheRY
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Helmholtz equation

The Laplacian is a formally self-adjoint operator

As a consequence the eigenvalue problem (Helmholtz equation)
Ap; = Aip;

satisfies:

B )\ eR, infact we can order them 0= X1 > A9 = A3 > ... > —©
B eigenfunctions to different eigenvalues are orthogonal (i, ¢;)r2(m) = 0.

<Af7 h> = —<Vf, Vh> = <f7 Ah>
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Discrete Helmholtz equation

We can rewrite the Helmholtz equation as an equivalent generalized eigenvalue problem
Api = Xipi < Lp; = Aip; < —Se; = AMy;
Because M is symmetric positive definit and S is symmetric, L is symmetric with respect to the M-inner product:
(Lf,g)m = FISM Mg = fTMM~1Sg = (f, Lg)m
The eigenvectors of L can therefore be chosen to be orthonormal with respect to the M-inner product. If we collect all of them in a matrix ® this reads

"M =1
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Dirichlet energy and eigenfunctions

Let ¢; : M — R be a (normalized) eigenfunction with corresponding eigenvalue \; and consider the Dirichlet energy

J Vi = f Vi, Vi) = —J Pildp; = —)\zf Qs = — N
M M M M

This provides us with a nice characterization of the eigenvalues in terms of the corresponding eigenfunctions.
In particular from the above relation we see that if \; = 0, then ; must be a constant function. Further \; = 0 is always an eigenvalue of A, since

Af = 0f for any constant function f.
All other eigenvalues are strictly negative. Sometimes the LBO (or the Helmholtz equation) is defined with a minus, such that all eigenvalues are positive.
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Integral of eigenfunctions

For every function f € H'(M) we observe

fMAfszlAfz—fM<V1,Vf>:0

This implies that for every eigenfunction ; with corresponding eigenvalue \; # 0:

1
f @i:_f Ap; =0
M Ai Jm

The eigenfunction ¢ with corresponding eigenvalue Ay = 0 is constant, ¢g(p) = c¢. Due to the normalization we get

1= 2(p)dp = 2 M S
JMsO(p)p c"area(M) < e (D)
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Change of basis

Due to the orthogonality of eigenfunctions, we can write every function f € L?(M) as a linear combination

f(x) = Z cipi(r) = Z<f7 wiyr2pi(x)f = Z<f,<pi>1v1% = o7 Mf
i1 iz p

—
+ C1 + C9 + C3 + ..
constant Fiedler
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Invariance under isometries

The Laplace Beltrami operator is an intrinsic op- %3

erator and therefore invariant to isometric defor- 61,7 oy

mations. #

However the eigenfunctions are not uniquely de- g

fined (signflips, higher dimensional eigenspaces). h
N\ N

— R
\ T\ R
B 7
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Weyl's law
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Influence of scaling

What happens to the eigenvalues and eigenfunctions when we simply rescale a shape?

Weyls law is already suggesting us that something is going to change.

S—aS
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Spectral descriptors

We will consider different descriptors that rely on the LBO.

IN2238 - Analysis of Three-Dimensional Shapes 15. Laplace Beltrami Operator — 16 / 16

13



	15. Laplace Beltrami Operator
	Laplace Beltrami Operator
	Example: Euclidean space
	LBO in local coordinates
	LBO in local coordinates
	Discrete LBO
	Helmholtz equation
	Discrete Helmholtz equation
	Dirichlet energy and eigenfunctions
	Integral of eigenfunctions
	Change of basis
	Invariance under isometries
	Weyl's law
	Influence of scaling
	Spectral descriptors

