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Heat kernel signature m

We define the heat kernel signature at a point z € S as the vector
HKS(z) = (k, (z,2), ..., kep(z,2)) € RT
ke(z,x) = Zekktﬁbi(fb)
k=0

In this view, each evaluation of the heat kernel in the vector above
describes the amount of heat staying at point z after time ¢, when
starting with a unit heat source (dirac) at = itself.

The HKS also has an informative property. If the eigenvalues of the
Laplacians on S; and S, are not repeated, then:

d: Sy — Sy is an isometry iff k2t (z, z) = k22 (®(z), P(x))
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Metric spaces H H

Let M be a set. The tupel set (M,dy), dyr - M x M — Rsqis @
metric space if

o identity of indiscernibles: dy;(z,y) =0z =y

o symmetry: dy(z,y) = dy(y, )

o triangle inequality: dys(z,y) < dar(x, 2) + dyg(2,y) forall z,y, 2 € M

Satisfying a subset of these properties leads to the definition of
"semi”-metric spaces, "pseudo’metric spaces, efc.
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The distance from a point z to a set S in a metric space X is defined
by

dist, (x,S) =inf dy (x,y)
ye

The diameter of a set S in a metric space X is defined by

diam(S) = S:;IEDS d, (X,V) >
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Hausdorff distance

The Hausdorff distance between two compact subsets X,Y C
(Z,dy)is defined by

d%(X,Y) = max{sup dist 7 (x, Y, sup dist z (y, X)}
reX yey X

X1 GGl D
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Gromov Hausdorff distance m

Can we define a Hausdorff distance between metric spaces?

The general idea is to embed the two metric spaces (X, dx) and
(Y, dy) into a new metric space (Z,dz) and compute the Hausdorff
distance in the resulting embeddings.

(Y,d,) =

Further we define dqy(X,Y) < rif and only if there exists a metric
space (Z,dz) and subspaces X',Y’" C Z which are isometric to X
and Y such that d% (X", Y") <.
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Gromov Hausdorff distance m

The Gromov Hausdorff distance between two metric spaces
(X,dx),(Y,dy) Is defined by

dge (X,Y) = inf d (f(X),g(Y))
Z,f,g
The infimum is taken over all ambient spaces Z and isometric embeddings

f:X=72,9:Y =17

The Gromov Hausdorff distance is a metric on the space of equivalence
classes of metric spaces.

X=Yiff XandY are isometric.
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The idea is closely related to multidimensional scaling (MDS). There
however the metric space Z = R* is fixed (and euclidean).
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Coverings H | \

Let z € X. An open ball of radius > ( centered at z is defined by
B(x) ={z€ X :dx(z,2) <7}

For a subset A C X, we define
B,(4) = UseaB, 0

A set C'C X isan r-covering of X if B,(C) = X.
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Covering of a shape U H

Let {z1,...,2,} C X be ar-covering of the compact metric space (X, dy).
Then

dGH(XJ {mla e 7$n}) <r

This tells us that "shape samplings” are close to the
underlying shapes in the Gromov-Hausdorff sense.
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""" Consistency to sampling H H

Let {z;}"_, be a r-covering of X and {y;}"_, be a r-covering of Y.
Then

‘dgy{(x Y) - dg}[ ({Xi }iril’ {yj }mll)‘ <r+r

j=
This means dqy Is consistent to sampling.
[f we have a way to compute dgy for dense enough (small r) sam-

plings of X and Y, then it would give us a good approximation to
what happens in the continuous spaces.
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Optimal coverings
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Can we devise an optimal sampling scheme in a % o
metric sense? ‘\@ D
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Fix n the number of points we want to have in our
final covering X,,.

Non-uniqueness due to

¢ choice of starting point p;
¢ NON-Unique maximizer in iterations
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Voroni cells H H

Each sampling {z;} of a shape X induces a set of
regions {V;}

Vi(X) = {z € X s dx(r,2;) <dx(xv,;)Vi # J}
These regions are known as Voronoi regions or
Voronoi cells.

Each point x; from the sampling can be seen as a
representative for its Voronoi region.

Nearest neighbor search corresponds to identifica-
tion of Voronoi cell = connection to kd-trees.
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Optimal sampling HH

The optimal sampling (with n samples) is the one
minimizing the maximum cluster radius:

Eool{2i}) = max; maxyey, dy (2, ;)
Optimal sampling is NP hard to compute.

However: FPS is "aimost” optimal in the sense

eoo({asf-c "H< 2ming, 1 MAx; MaXeey; dy (T, ;)
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Final samling has progressively increasing density.

It is efficient to compute.

It is worse than optimal sampling by at most a factor
of 2.
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Correspondence

A correspondence between two sets X and Y is a subset of the
product space R C X x Y satisfying

o for every z € X there exists at least one y € Y such that (z,y) € R

o forevery y € Y there exists at least one z € X such that (z,y) € R

Any surjective map f: X — Y defines a cor-
respondence:

R={(z, f(z),z € X)}

However not every correspondence is associ-
ated with a map.
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Metric distortion H H

The distortion of a correspondence R C X x Y is defined by

dis(R) = sup{|dx (z,2') = dy (y.')| : (z,y), (/) € R}

Key observation:

dis(R) = 0 if and only if R is associated with an isometry.

We say that R is an e-isometry if dis R < .

IN2238 — Analysis of Three-Dimensional Shapes 17. Quadratic Assignment - 18



orrespondaence anc

Gromov Hausdorff

There exists a correspondence R such that

den(X,Y)<r 0 dy(a,2)) - dy(yy))| < 2r for all pairs
(z,y),(z',y) € R of correspondence ele-
ments.

This allows us to speak about d Just by using correspondences R:
den(X,Y) = 2infpdisR

Intuition:  Choose as embedding space (Z,dz) one of the metric spaces
(X, dy),(Y,dy).
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A computational approach H H

We want to compute a correspondence R C X x Y minimizing
der(X,Y) = LinfpdisR
Let us rewrite
dGH(X Y) %mfR dis R
= yinfpsup{ldx(,2') = dy (y,9/)] : (29), (',9/) € R}
1
2

mff X—Y SUp, 4 ‘dX(fc 37) dy(f(iE),f(iB,))D

=

The last equality assumes that the optimal R is associated with a
surjective map f.
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A computational approach H H

For two coverings {z;}™_, and {y;}"_, (with sampling radii r and ')
we can define a related distance

dp({ai}, {i}) = 3 mingep, maxi<; jon |dx (i, 25) = dy (4 (i), ()

where P, denotes the set of all permutations of {1,...n}.

From the bounds we have for r-coverings it can be shown that

don(X,Y) <41+ dp({zi, {9:))
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Discretization H H
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Rij=1ifz;and y; arein correspOndence.
Asking for a bijection corrersponds to require R to be a permutation matrix.
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Discretization H | \

The metnc distortion terms can be incorporated into a cost matrix
0 eRvX

Clinyjm) = [dx (xi,75) = dy (1, Ym)

(X, Y1) 0 135 | 234 | 1046 | 7.64

(X,Y,) | 135 0o | 1352 | 112 | 711

(X,Ys) | 234 | 1352 | o 022 | 2344

104.6 11.2 0.22 0 17.5

7.64 71.1 23.44 17.5 0

(% Y1) (X ¥2) (%, ) -
With this notation we can write the distance as

dp({zi}, {yi}) = 5 mingmax; j . Clinyjm) RitRjm

where R is in the space of permutation matrices of size n.
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Sensitivity to outliers
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Gromov Hausdorff relaxed H H

We obtain a family of related problems by relaxing the max to a sum.
Fix p > 1 and define the costs as

C((Z))(Jm) = ‘dx(%,ﬂij) - dY(ylaym)‘p

Then we can consider the distance

A o, ) = Sminacr, Ty O g i
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Quadratic Assignment ProblemM H

A (o), () = Smineep, Ty jen OO Ris i
Rewriting in matrix notation , we get to the quadratic programm:

min  vec(R)" Cvec(R)
RE{Ujl}an

st. Rl=1R'1=1

where vec(R) is a column-stacked reshaping of R.

The quadratic optimization problem is also known as Quadratic As-
signment Problem (QAP).
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Quadratic Assighnment Problem H H

min  vee(R)" Cvec(R)
RE{U,I}"‘X”

st. Rl=1R'1=1

This combinatorial optimization problem is unfortunately NP-hard.

In the literature there have been several attempts to relax the prob-
lem to make it more tractable. Int the following we will present some
of these approaches.
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Bistochastic relaxation H H

Leave the combinatorial setting by allowing the correspondence o

take on continuous values.
min ’UGC(R)TCU(?C(R) 01010302 03
Rel0 L] (“ 03 01 01 01 04 =1
st. Rl=1, RT1 =1 X % 0203 02 02 01
'l ] 0202 01 04 01
Now each row and column can 0203 0301 o1
be regarded as discrete probabil- -1
ity distributions.
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Probability distribution I
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Optimization

min  vec(R)' Cvec(R)
Re[o’l]an

st. Rl=1R'1=1

Can be solved via projected gradient descent.

® Slow convergence

® Local optimum

Implement efficient projection
Choose good starting point
Choose step size or do line search
Binarize the final solution

Easy to implement
Local optima are usually good enough in practice

©O | | 00
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Spectral relaxation

An alternative characterization of permutation matrices
Re{0,1}™" RIR=1I

gives rise to the spectral relaxation ® ®
min  vee(R)" Cvec(R) bistochastic
RE[O’l]nX n
st. R'R=1

or even more relaxed:

min 27 Oz
z€[0,1]*

T
SL T r=n spectral
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Spectral relaxation m

min 2! Oz
z€[0,1]"”

s.1. xT:z: =N

Global optimum given by eigenvector of C' associated to smallest
eigenvalue.

® The final solution is not a correspondence (needs post-processing)
® Needs binarization
® We are losing contact with the Gromov-Hausdorff...

© Easy to implement
© Global optimum
© Efficient
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