1L

Analysis of 3D Shapes (IN2238)

Frank R. Schmidt
Matthias Vestner

Summer Semester 2017

[

Heat kernel signature m

We define the heat kernel signature at a point € S as the vector

HES(x) = (ki (z,2), ..., ky (z,2)) € RT

nw) = Y M)
k=0

In this view, each evaluation of the heat kernel in the vector above
describes the amount of heat staying at point » after time ¢, when
starting with a unit heat source (dirac) at = itself.

The HKS also has an informative property. If the eigenvalues of the
Laplacians on S; and S5 are not repeated, then:

®: S — Sy is an isometry iff k2 (z,z) = k22 (D(z), D(z))
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""" Distance to set, diameter U H

Metric spaces

Let M be a set. The tupel set (M,dy), dys - M x M = Rypis a
metric space if

o identity of indiscernibles: dy(z,5) =0 & 2 =y
. SymmetrW dM('Z“,y) = dM(yv'T)

o triangle inequality: dys(z,y) < dar(w,2) + das(z,y) for all 2y, 2 € M

Satisfying a subset of these properties leads to the definition of
“semi’-metric spaces, "pseudo’metric spaces, etc.
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Hausdorff distance

The Hausdorff distance between two compact subsets XY C
(Z,dz) is defined by

d%(X,Y) = max{sup dist z(z,Y), sup dist z (y, X )}
T€EX YyeY

CABICARIE

(X, dx) v, dy)
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""" Gromov Hausdorff distance [

The distance from a point z to a set S in a metric space X is defined

by
disty (x.5) =inf d (x.) x ,,@X
The diameter of a set S in a metric space X is defined by

diam(S) = sup d, (x.) X
x.yeS
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" Gromov Hausdorff distance U H

Can we define a Hausdorff distance between metric spaces?

The general idea is to embed the two metric spaces (X, dx) and
(Y, dy) into a new metric space (Z,dz) and compute the Hausdorff
distance in the resulting embeddings.

‘ (Y.dy)

Further we define dgx(X,Y) < rif and only if there exists a metric
space (Z,dz) and subspaces X'.Y" C Z which are isometric to X
and Y such that d4 (X', Y') <.
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Fixed embeddihg space UH

The Gromov Hausdorff distance between two metric spaces
(X,dx), (Y,dy) is defined by

dy (X.1)= Inf 7 (f(X). (1)

The infimum is taken over all ambient spaces Z and isometric embeddings
IS YAREYS

The Gromov Hausdorff distance is a metric on the space of equivalence
classes of metric spaces.

X =Y iff X and Y are isometric.
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The idea i closely related to multidimensional scaling (MDS). There
however the metric space Z = R¥ is fixed (and euclidean).

=

-
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Coverings . Covering of a shape U I

Let z € X. An open ball of radius r > 0 centered at « is defined by Let {x1,...,2,} C X be a r-covering of the compact metric space (X, dx).
Then
Bi(z)={z€ X :dx(z,2) <r}

(X Azy o)) <
For a subset A C X, we define den(X {z1,..,an}) <7
BF(A) = Ua€ABr(a)

This tells us that "shape samplings” are close to the

AselC C Xis anr-covering _Of X, (C)=X. underlying shapes in the Gromov-Hausdorff sense.
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"~ Consistency to sampling U H

Let {z;}"_, be a rcovering of X and {y;}", be a r-covering of Y.
Then

<r+r'

‘dgy{(Xa Y) - dg]{({xi }:'il’ {yj }7;1)

This means dgy is consistent to sampling.

If we have a way to compute d¢y for dense enough (small r) sam-
plings of X and Y, then it would give us a good approximation to

. . Can we devise an optimal sampling scheme in a
what happens in the continuous spaces.

metric sense?
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oroni ce nin
Voroni cells

Each sampling {z;} of a shape X induces a set of
regions {V;}
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Fix n the number of points we want to have in our
final covering X,

Vi(X)={z € X 1 dy(z,2;) < dx(z,2;)Vi # j}

These regions are known as Voronoi regions or
Voronoi cells.

Each point z; from the sampling can be seen as a
Non-uniqueness due to representative for its Voronoi region.
o choice of starting point p;

( gpontp, Nearest neighbor search corresponds to identifica-
o non-unique maximizer in iterations

tion of Voronoi cell = connection to kd-trees.
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Optimal sampling U

The optimal sampling (with n samples) is the one
minimizing the maximum cluster radius:

Final samling has progressively increasing density.

exo({;}) = max; max,ey, dy (2, 2;) Itis efficient to compute.

Optimal sampling is NP hard to compute. ‘ . .
It is worse than optimal sampling by at most a factor

However: FPS is "almost” optimal in the sense of 2.

am({x{ps}) < 2ming,y max; maxyey, dy (2, 2;)
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Correspondence

i

Metric distortion

A correspondence between two sets X and Y is a subset of the
product space R C X x Y satisfying

o for every z € X there exists at least one y € ¥ such that (z,y) € R
o for every y € V" there exists at least one = € X such that (z,y) € R
Any surjective map f : X — Y defines a cor-
respondence:

R={(z, f(x),z € X)}

However not every correspondence is associ-
ated with a map.
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orresponaence ana

Gromov Hausdorff

There exists a correspondence R such that
|dx (z,2") = dy(y,y)] < 2r for all pairs
(z,y),(,y') € R of correspondence ele-
ments.

der(X,Y)<r =

This allows us to speak about dgy just by using correspondences R:
den(X,Y) = §infpdisR

Intuition: Choose as embedding space (Z,dz) one of the metric spaces
(X, dx),(Y, dy).
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A computational approach H H

For two coverings {z;}, and {y;}7-, (with sampling radii r and ')
we can define a related distance

dp({zi}, {yi}) = § mineep, maxici jn [dx (21, 5) = dy (Y ()|

where P, denotes the set of all permutations of {1,...n}.

From the bounds we have for r-coverings it can be shown that

den(X.Y) <r+r'+dp({xi} {ui})
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[
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The distortion of a correspondence R C X x Y is defined by

dis(R) = sup{|dx (z, ') - dy ()| : (z,9). (z',y/) € R}

Key observation:

dis(R) = 0if and only if R is associated with an isometry.

We say that R is an e-isometry if dis R <.
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Acompu‘ta"tiohal approach UH

We want to compute a correspondence R C X x ¥ minimizing
deu(X,Y) = LinfpdisR
Let us rewrite
den(X,Y) = LinfrdisR
= g infpsup{|dx(z,2') - dy (y,y/)| (,9), (¢',y) € R)
(= gt sy supg p dx (,2)  dy (f(z), f(2')))

The last equality assumes that the optimal R is associated with a
surjective map f.
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Discreti'zation

Acorrespondence can be represented by, a malrix R € {o,1jmxm
0 0

& [0 0
x ’i\ 1 o]

Rij=1ifz; andy; arein correspbndence.
Asking for a bijection corrersponds to require R to be a permutation matrix.
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Discretization
The meztricydistortion terms can be incorporated into a cost matrix
C E Rn Xn
Clayjm) = dx (23, 25) = dy (31, ym)|

L) 0 135 | 234 | 1046 | 764

(x,»,) | 135 0 1Bs2 | 12 | 71
(x,05) | 234 | B2 | o | 022 | 234
: 046 | 12 02 | o0 | 175

764 | 711 | 2344 | 175 0
(x5 2 (x5 22)(%5 35) -+

With this notation we can write the distance as
dp({a:}, {ui}) = § mingmax; 1 m Ciyjmy RitRim

where R is in the space of permutation matrices of size .
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Gromov Hausdorff relaxed m

Quadratic Assighment Problemm

We obtain a family of related problems by relaxing the max to a sum.
Fix p > 1 and define the costs as

C((Z;(]m) = |dX(“Ti‘rxj> - dy(ylrym)lp

Then we can consider the distance

A (o) o)) = minep, T sen Ol BB
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""" Quadratic Assignment problemm

min  vec(R)7 Cvec(R)
Re{o,1jrxn

st Rl=1,R"1=1

This combinatorial optimization problem is unfortunately NP-hard.

In the literature there have been several attempts to relax the prob-
lem to make it more tractable. Int the following we will present some
of these approaches.
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Probability distribution U7
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48 (foi} o)) = Sminecr, T, sen OO oy BB
Rewriting in matrix notation , we get to the quadratic programm:

min  vec(R)" Cvec(R)
Refo,1}rxe

st Rl=1,R'1=1

where vec(R) is a column-stacked reshaping of R.

The quadratic optimization problem is also known as Quadratic As-
signment Problem (QAP).
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Leave the combinatorial setting by allowing the correspondence to

take on continuous values.
min UGC(R)TCWEC(R) 0.1]01/]03]02] 03
Refo g ; 03 01 01 01 04 2=!
st Rl= 1; RTl =1 0203|0202 01
| 02020104 0.1
Now each row and column can ’ 020303 01 o
be regarded as discrete probabil- : -1
ity distributions. \?‘%
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Optimization
in vec(R)" Cec(R
HE[%H?‘ Xn@ec( ) Cuec(R)
st. Rl=1R1=1

Gan be solved via projected gradient descent.

® Slow convergence

® Local optimum

® Implement efficient projection

® Choose good starting point

® Choose step size or do line search
® Binarize the final solution

®© Easy to implement
®© Local optima are usually good enough in practice
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Spectral relaxation

An alternative characterization of permutation matrices
Re{o,}™ RTR=1I
gives rise 1o the spectral relaxation

min vec(R)T Cvec(R) bistochastic
Refo
st. RIR=1
or even more relaxed:
min 27 Cr
zef0 1]
st elr=n spectral
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Spectral relaxation

min z'Cx
01

st. tlz=n

Global optimum given by eigenvector of C' associated to smallest
gigenvalue.

® The final solution is not a correspondence (needs post-processing)
® Needs binarization
® We are losing contact with the Gromov-Hausdorff...

®© Easy to implement
® Global optimum
© Efficient
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