

Matthias Vestner

Summer Semester 2017

Heat kernel signature

1 . t.

H k

IN2238 – Analysis of Three-Dimensional Shapes

We define the **heat kernel signature** at a point $x \in S$ as the vector

$$KS(x) = (k_{t_1}(x, x), \dots, k_{t_T}(x, x)) \in \mathbb{R}^T$$
$$_t(x, x) = \sum_{k=0}^{\infty} e^{\lambda_k t} \phi_k^2(x)$$

In this view, each evaluation of the heat kernel in the vector above describes **the amount of heat staying at point** *x* after time *t*, when starting with a unit heat source (dirac) at *x* itself.

The HKS also has an informative property. If the eigenvalues of the Laplacians on S_1 and S_2 are not repeated, then:

 $\Phi:S_1\to S_2$ is an isometry iff $k_t^{S_1}(x,x)=k_t^{S_2}(\Phi(x),\Phi(x))$

Distance to set, diameter

The distance from a point \boldsymbol{x} to a set \boldsymbol{S} in a metric space \boldsymbol{X} is defined by

$$\operatorname{dist}_{X}(x,S) = \inf_{y \in S} d_{X}(x,y)$$

17. Ou

The diameter of a set S in a metric space X is defined by

 $\operatorname{diam}(S) = \sup d_X(x, y)$

 $x, y \in S$

17. OL

IN2238 – Analysis of Three-Dimensi

19.94

Gromov Hausdorff distance

Can we define a Hausdorff distance between metric spaces?

The general idea is to embed the two metric spaces (X, d_X) and (Y, d_Y) into a new metric space (Z, d_Z) and compute the Hausdorff distance in the resulting embeddings.

Further we define $d_{GH}(X,Y) < r$ if and only if there exists a metric space (Z,d_Z) and subspaces $X',Y' \subset Z$ which are isometric to X and Y such that $d_H^Z(X',Y') < r$.

IN2238 – Analysis of Three-Dimensional Shapes

C. Barn

Fixed embedding space

The idea is closely related to multidimensional scaling (MDS). There however the metric space $Z = \mathbb{R}^k$ is fixed (and euclidean).

Metric spaces

Let M be a set. The tupel set $(M,d_M),\,d_M:M\times M\to \mathbb{R}_{\geq 0}$ is a metric space if

- identity of indiscernibles: $d_M(x, y) = 0 \Leftrightarrow x = y$
- symmetry: $d_M(x,y) = d_M(y,x)$

19.00

Cillin -

• triangle inequality: $d_M(x,y) \le d_M(x,z) + d_M(z,y)$ for all $x,y,z \in M$

Satisfying a subset of these properties leads to the definition of "semi"-metric spaces, "pseudo"-metric spaces, etc.

PARTING THE PRODUCTION THE PRODUCT THE PRODUCTION THE PRODUCT THE PRODUCT

- Gromov Hausdorff distance
- The **Gromov Hausdorff distance** between two metric spaces $(X, d_X), (Y, d_Y)$ is defined by

$$d_{\mathcal{GH}}(X,Y) = \inf_{Z,f,g} d_{\mathcal{H}}^{Z}(f(X),g(Y))$$

The infimum is taken over **all** ambient spaces Z and isometric embeddings $f: X \rightarrow Z, g: Y \rightarrow Z$.

The Gromov Hausdorff distance is a metric on the space of equivalence classes of metric spaces.

 $X \equiv Y$ iff X and Y are isometric.

17. Quadratic Assig

Coverings

Let $x \in X$. An open ball of radius r > 0 centered at x is defined by

 $B_r(x) = \{ z \in X : d_X(x, z) < r \}$

For a subset $A \subset X$, we define

$$B_r(A) = \bigcup_{a \in A} B_r(a)$$

A set $C \subset X$ is an **r-covering** of X if $B_r(C) = X$.

Covering of a shape

Let $\{x_1, \ldots, x_n\} \subset X$ be a r-covering of the compact metric space (X, d_X) . Ther

Optimal coverings

 $d_{GH}(X, \{x_1, \dots, x_n\}) \le r$

This tells us that "shape samplings" are close to the underlying shapes in the Gromov-Hausdorff sense.

Let $\{x_i\}_{i=1}^n$ be a r-covering of X and $\{y_i\}_{i=1}^{n'}$ be a r-covering of Y. Then

$$\left| d_{\mathcal{GH}}(X,Y) - d_{\mathcal{GH}}(\left\{ x_i \right\}_{i=1}^m, \left\{ y_j \right\}_{j=1}^{m'}) \right| \le r + r'$$

This means d_{GH} is consistent to sampling.

If we have a way to compute d_{GH} for dense enough (small r) samplings of X and Y, then it would give us a good approximation to what happens in the continuous spaces.

Analysis of Three-D

1.14

Can we devise an optimal sampling scheme in a metric sense?

IN2238 – Analysis of Three-Dimen

Farthest point sampling

Fix n the number of points we want to have in our final covering X_n .

Intitialize $X_1 = \{p_1\}$ For k = 2:n $p = \operatorname{argmax} d(x, X_{k-1})$ $X_k = X_{k-1} \cup \{p\}$ end

Non-uniqueness due to

- choice of starting point p₁
- non-unique maximizer in iterations

17. Quadratic A

Optimal sampling

IN2238 – Analysis of Three-Dime

Het.

The optimal sampling (with n samples) is the one minimizing the maximum cluster radius:

 $\varepsilon_{\infty}(\{x_i\}) = \max_i \max_{x \in V_i} d_x(x, x_i)$

Optimal sampling is NP hard to compute.

However: FPS is "almost" optimal in the sense

 $\varepsilon_{\infty}(\{x_i^{fps}\}) \le 2\min_{\{x_i\}} \max_{x \in V_i} d_x(x, x_i)$

IN2238 – Analysis of Three-I

the set

N2238 – Analysis of Three-Dir

1.00

Voroni cells

Each sampling $\{x_i\}$ of a shape X induces a set of regions $\{V_i\}$

$V_i(X) = \{ x \in X : d_X(x, x_i) < d_X(x, x_j) \, \forall i \neq j \}$

These regions are known as Voronoi regions or Voronoi cells.

Each point x_i from the sampling can be seen as a representative for its Voronoi region.

Nearest neighbor search corresponds to identification of Voronoi cell \Rightarrow connection to kd-trees.

17. Quadratic Assi

Farthest point sampling

Final samling has progressively increasing density.

It is efficient to compute.

It is worse than optimal sampling by at most a factor of 2.

Correspondence

A correspondence between two sets X and Y is a subset of the product space $R \subset X \times Y$ satisfying

- for every $x \in X$ there exists at least one $y \in Y$ such that $(x,y) \in R$
- for every $y \in Y$ there exists at least one $x \in X$ such that $(x,y) \in R$

Any surjective map $f: X \to Y$ defines a correspondence:

$$R = \{(x, f(x), x \in X)\}$$

However not every correspondence is associated with a map.

IN2238 - Analysis of Three-Dimensional Shapes 17. Quadratic Assignment Correspondence and Gromov Hausdorff

 $d_{GH}(X,Y) < r$

IN2238 – Analysis of Three-Dimensio

There exists a correspondence R such that $|d_X(x,x') - d_Y(y,y')| < 2r$ for all pairs $(x,y), (x',y') \in R$ of correspondence elements.

This allows us to speak about d_{GH} just by using correspondences R:

$$d_{GH}(X,Y) = \frac{1}{2}\inf_R \operatorname{dis} R$$

Intuition: Choose as embedding space (Z,d_Z) one of the metric spaces $(X,d_X),\!(Y,d_Y).$

A computational approach

For two coverings $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$ (with sampling radii r and r') we can define a related distance

 $d_P(\{x_i\}, \{y_i\}) = \frac{1}{2} \min_{\pi \in P_n} \max_{1 \le i, j \le n} |d_X(x_i, x_j) - d_Y(y_{\pi(i)}, y_{\pi(j)})|$

where P_n denotes the set of all permutations of $\{1, \ldots n\}$.

From the bounds we have for *r*-coverings it can be shown that

$$d_{GH}(X,Y) \le r + r' + d_P(\{x_i\},\{y_i\})$$

Metric distortion

The **distortion** of a correspondence $R \subset X \times Y$ is defined by

$$\operatorname{dis}(R) = \sup\{|d_X(x, x') - d_Y(y, y')| : (x, y), (x', y') \in R\}$$

Key observation:

dis(R) = 0 if and only if R is associated with an isometry.

We say that R is an ε -isometry if dis $R \leq \varepsilon$.

IN2238 – Analysis of Three-Dimensiona

A computational approach

We want to compute a correspondence $R \subset X \times Y$ minimizing

$$d_{GH}(X,Y) = \frac{1}{2}\inf_R \operatorname{dis} R$$

Let us rewrite

$$\begin{split} d_{GH}(X,Y) &= \frac{1}{2} \inf_R \dim R \\ &= \frac{1}{2} \inf_R \sup\{ |d_X(x,x') - d_Y(y,y')| : (x,y), (x',y') \in R \} \\ &\left(= \frac{1}{2} \inf_{f:X \to Y} \sup_{x,x'} |d_X(x,x') - d_Y(f(x),f(x'))| \right) \end{split}$$

The last equality assumes that the optimal R is associated with a surjective map f.

Gromov Hausdorff relaxed

We obtain a family of related problems by relaxing the max to a sum. Fix $p \geq 1$ and define the costs as

$$C_{(il)(jm)}^{(p)} = |d_X(x_i, x_j) - d_Y(y_l, y_m)|^p$$

Then we can consider the distance

$$d_P^{(p)}(\{x_i\},\{y_i\}) = \frac{1}{2} \min_{\pi \in P_n} \sum_{1 \le i,j \le n} C_{(il)(jm)}^{(p)} R_{ij} R_{lm}$$

Quadratic Assignment Problem

 $d_P^{(p)}(\{x_i\}, \{y_i\}) = \frac{1}{2} \min_{\pi \in P_n} \sum_{1 \le i, j \le n} C_{(il)(jm)}^{(p)} R_{ij} R_{lm}$

Rewriting in matrix notation , we get to the quadratic programm:

$$\min_{\substack{R \in \{0,1\}^{n \times n}}} vec(R)^T Cvec(R)$$

s.t. $R1 = 1, R^T 1 = 1$

where vec(R) is a column-stacked reshaping of R.

The quadratic optimization problem is also known as **Quadratic Assignment Problem (QAP)**.

