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16. Spectral Descriptors

Summary Laplacian
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The Laplace Beltrami operator is an operator matching a function f : M Ñ R to
another function ∆f : M Ñ R.

ż

M
∆fhdp “ ´

ż

M
x∇f,∇hydp @h

Some key properties are:

■ it is a linear operator
■ it is an intrinsic operator
■ it is (formally) self-adjoint
■ it has a discrete spectrum (countably many eigenvalues tλiu8

i“1)
■ all eigenvalues are real and non-positive
■ the first eigenvalue (when ordered with increasing magnitude) equals 0. The

corresponding eigenfunction is constant
■ the eigenfunctions can be chosen to be orthonormal

Change of basis
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Due to the orthogonality of eigenfunctions, we can write every function
f P L2pMq as a linear combination

fpxq “
8ÿ

i“1

ciϕipxq “
8ÿ

i“1

xf, ϕiyL2ϕipxqf “
ÿ

i

xf ,ϕϕϕiyMϕϕϕi “ ΦΦΦΦΦΦTMf

Spectral descriptors
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We will consider different descriptors that rely on the LBO.

Global point signature
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The most straightforward approach is to map each point p P M to an
infinite-dimensional vector according to the eigenfunctions of the Laplacian:

p ÞÑ pϕ1ppq, ϕ2ppq, ϕ3ppq, . . .q P R8

A scale invariant version is the global point signature (GPS)

p ÞÑ p ϕ2ppqa|λ2| ,
ϕ3ppqa|λ3| ,

ϕ4ppqa|λ4| , . . .q P R8

It weights lower frequencies with a bigger weight.

Multiscale property
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In general it would be desirable to have a descriptor which captures geometric
information at different scales.

For small scales (locally) points 1 and 3 are not distinguishable.
The notion of scale we are looking for should provide a desciptor having an
analogous behaviour to the one depicted in the following figure

Heat diffusion
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The diffusion of heat on a surface can be described by the heat equation:

Bupx, t;u0q
Bt “ ∆upx, t;u0q

We write upx, t;u0q for the amount of heat at point x after time t, when at time
zero the distribution of heat is given by

upx, 0q “ u0pxq

Physical interpretation:
Rate of change of heat within a region V equals the negative of the
flux through BV :

d

dt

ż

V

udx “ ´
ż

BV
F ¨ νdS “ ´

ż

V

divpFq

In many situations F is proportional to the gradient of u but points
in the opposite direction: F “ ´a∇u



Dirac disctribution
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The Dirac distribution placed at a point z P M is defined via

xf, δzy “
ż

M
fpxqδzpxqdx “ fpzq

for all continuous functions f .

■ the dirac distribution is not a function in the classical sense
■ what is written above is not really an inner product but a so called dual pairing
■ on R you can imagine a dirac as the limit of thinner and thinner gaussians

δzpxq “ lim
σÑ0

1?
2πσ

expp´}x ´ z}2
2σ2

q

■ the discrete approximation of the dirac is given by δδδz “ M´1ez

Heat kernel
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A soloution to the heat equation is given by

upx, t;u0q “
ż

M
kMt px, yqu0pyqdy

The function kMt : M ˆ M Ñ R is called heat kernel of M and it is describes
from one point to another in time t.
In particular assume we want to diffuse heat from a dirac distribution δz. In that
case we get:

upx, t; δzq “
ż

M
kMt px, yqδzpyqdy “ kMt px, zq

Heat kernel euclidean
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The heatkernel in Rn is given by

kR
n

t px, yq “ 1?
4πt

n expp´}x ´ y}2
4t

q

From the expression above we see that the distance between two points (Euclidean
in this case) can be recovered from the heat kernel.

The Dirac distribution can be modelled as the limit

δzp¨q “ lim
tÑ0

ktpz, ¨q

Heat kernel on manifolds
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Also the geodesic distance ot two points on a two dimensional manifold can be
recovered from the heat kernel
Varadhan’s formula:

d2px, yq “ ´ lim
tÑ0

4t logpkMt px, yqq

In addition we have the following informative property:
Φ : M1 Ñ M2 is an isometry iff

kM1
t px, yq “ kM2

t pΦpxq,Φpyqq

Solving the heat equation using
eigenfunctions of the LBO 1
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Bupx, t;u0q
Bt “ ∆upx, t;u0q upx, 0q “ u0pxq

We know that the eigenfunctions of the LBO ∆ form a basis, thus for every t we
can find coefficients ckptq, such that

upt, x;u0q “
8ÿ

k“1

ckptqϕkpxq

Using the linearity of B
Bt and ∆ the heat equation becomes

8ÿ

k“1

9ckptqϕkpxq “
8ÿ

k“1

ckptq∆ϕkpxq “
8ÿ

k“1

λkckptqϕkpxq

Solving the heat equation using
eigenfunctions of the LBO 2
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We have transformed the heat equation

Bupx, t;u0q
Bt “ ∆upx, t;u0q upx, 0q “ u0pxq

into a collection of ordinary differential equations:

9ckptq “ λkckptq@k
with solutions ckptq “ dk exppλktq.
The coefficients dk are determined by the initial distribution of heat:

up0, x;u0q “
8ÿ

k“1

dkϕkpxq “ u0pxq ñ dk “ xϕk, u0y

upt, x;u0q “
8ÿ

k“1

xϕk, u0y exppλktqϕkpxq

Heat kernel using eigenfunctions
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The heat kernel kMt : M ˆ M Ñ R was defined as the solution of the heat
equation when initialized with a dirac:

kMt px, yq “ upx, t; δyq
In terms of eigenfunctions this gives:

kMt px, yq “
8ÿ

k“1

xϕk, δyy exppλktqϕkpxq

“
8ÿ

k“1

exppλktqϕkpyqϕkpxq

Heat kernel signature
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We define the heat kernel signature (HKS) at a point x P M as the vector

hkspxq “ pkt1px, xq, . . . , ktT px, xqq P RT

ktpx, xq “
8ÿ

k“0

eλktϕ2
kpxq

In this view, each evaluation of the heat kernel in the vector above describes the
amount of heat staying at point x after time t, when starting with a unit heat
source (dirac) at x itself.

The HKS also has an informative property. If the eigenvalues of the Laplacians on
M1 and M2 are not repeated, then:
Φ : M1 Ñ M2 is an isometry iff kM1

t px, xq “ kM2
t pΦpxq,Φpxqq



HKS as low pass filter
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The entries of the HKS can be seen as a weighted sum of ϕ2
kpxq:

8ÿ

k“0

fpλk; tqϕ2
kpxq

where fpλ; tq “ exppλtq is a low-pass filter for all parameters t.

WKS as band pass filter
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In contrast the wave kernel signature (WKS) chooses f ’s that act as band pass
filters

8ÿ

k“0

fpλk; tqϕ2
kpxq

fpλ, tq “ expp´plogpλkq ´ tq2
2σ2

q

Learned filter
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At some point people started to learn the weighting funcions f :
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