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SHAPE MATCHING
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REPRESENTATION

We already saw for 2D Matchings that a correspondence can be represented 
as permutation matrices if both shapes have the same number of vertices.

This does not scale well 
with the size of the shapes
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PROBLEMS
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FUNCTIONAL MAP
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FUNCTIONAL MAP

Assume we were given a bijection                     . Given any scalar 
function                    on      we can induce                    by 
composition.   

We can denote this transformation by a functional        such that
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NO INFORMATION LOSS

If we know     , we can obviously construct       by its definition 
.

Can we also reconstruct      if we only know       ? Yes, we can!

Let                      be an indicator function on       such that 

Then if we call                    , it must be                                       
                                        whenever                                            
and                 otherwise.
Since      is a bijection, this happens only once and          is the 
unique point            such that         
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LINEARITY

We can show that        is a linear map:

(by linearity of composition)

The key observation is that, while     can be a very complex transformation,  
      always acts linearly.

This means we can give       a matrix representation after choosing a 
basis for two function spaces on       and      .
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MATRIX NOTATION

Let                  be bases for function spaces                     on           such that

. Then we can write:

and

Putting both together, we get:
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MATRIX NOTATION

We can represent each function     on       by its coefficients      , and 
similarly            on     by the coefficients     . 

Rewriting in matrix notation, we have:

If the bases are orthogonal with respect to some inner product        , then we 
can simply write
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CONSTRUCTING C

Lets take a closer look at 

We know it holds:

Indicator function for vertex

Indicator function for vertex

Indicator function in the chosen basis of M

Indicator function mapped to the basis of N 

Indicator function on N in the indicator basis
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CONSTRUCTING C

Lets take a closer look at 

permutes rows 
each column is an eigenfunction 

Simply put, the Functional map C contains all the inner products between 
the basis functions of the two shapes, after the vertex ordering has been 
disambiguated by the bijection P.

This relation was actually already visible here:
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LINEAR MAP

?
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CHOICE OF BASIS

Up until now we have been assuming the presence of a basis for functions defined 
on the two shapes. The first possibility is to consider the indicator basis on each 
shape:

permutation matrix
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LBO EIGENFUNCTION BASIS

But we already learned about another possibility last week!

The eigenfunctions of the Laplace-Beltrami operator form an orthogonal 
basis (w.r.t. the weighted inner product          ) for     functions on each 
shape.

In particular, we can approximate:
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LBO EIGENFUNCTION BASIS

This means we can also approximate:

Looking at matrix notation, we are reducing the size of      to           .

LBO eigenfunctions
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STRUCTURE IN C

Isometries: Non-Isometries:
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EXAMPLES

Note that not every linear map corresponds to a (bijective) point-to-point 
correspondence.
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COMPUTING THE MAP

If we know enough compatible functions a and b we can deduce the linear relation 
by solving a bunch of linear equations:

Descriptor preservation

If we are given k descriptors, 
we can phrase k equations:

For instance, consider 
curvature or the Heat Kernel 
Signature from last week.

Landmark matches

Assume we know T(x) = y for some x. We can calculate the geodesic distance maps on 
both shapes and use them as constraints:

...
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COMPUTING THE MAP

In the common case in which n > m, we can solve the resulting linear system in the 
least-squares sense:
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IMPOSING STRUCTURE

If we have prior knowledge about the structure of the map we can also add regularizers 
to the optimization term:

For example, diagonal structure for isometries:

Imagine the blue line is 
diagonal...
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FUNCTIONS TO CORRESPONDENCE

Once we have found an optimal Functional Map      , we may want to convert 
it back to a point-to-point correspondence.

Simplest idea: Map indicator functions at each point.

This is very inefficient and sensitive to numerical errors from truncation.
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FUNCTIONS TO CORRESPONDENCE

Observe that each indicator function around x, when represented in the eigenbasis, has as 
coefficients the k-th column of the matrix          where k is the index of point x.

can be regarded as a set of n points in 

Representation of one indicator function in 
the eigenbasis

Representation of all indicator functions in 
the eigenbasis
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FUNCTIONS TO CORRESPONDENCE

Clearly, the same can be done for the eigenfunctions on the second shape N 

We can find correspondences by 
aligning both point clouds and 
searching for nearest neighbors

apply C
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EXAMPLE

Recovering correspondences from low-rank Functional Maps is a whole 
problem on its own.
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ISSUES

Even when choosing a small k, a lot of compatible functions are necessary 
to reliably solve for C without imposing any regularization.

But the regularization terms heavily depend the basis (and assumptions 
about the shapes).

Laplace-Beltrami eigenbasis: robust to nearly-isometric deformations only!

The recovered correspondences are often neither bijective nor continuous.
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VARIATIONS

Matching Partial Shapes

Moving away from isometries

Extensions for vector fields...

Combining with Neural Networks
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