Analysis of Three-Dimensional Shapes F. R. Schmidt, M. Vestner, Z. Lähner Summer Semester 2017 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 1

Room: 02.09.023 Wed, 17.05.2017, 14:00-16:00

Submission deadline: Tue, 16.05.2017, 23:59 to laehner@in.tum.de

Mathematics: Calculus recap and Manifolds

Recap the definition of partial derivative if you are not familiar with it anymore. Quick introduction of notation: For a differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$ the partial derivative of the j-th component of f by the i-th variable can be written as

- 1. $\partial_i f^j$ with $i \in \{1, ..., n\}, j \in \{1, ..., m\}$
- 2. $\frac{\partial f^j}{\partial x_i}$ describing the same thing but assuming that the variable are given names as is normally case (e.g. $(x, y, z) \mapsto (x, y + z)$)

The notation is a matter of taste but some are less confusion depending on the situation.

The differential is the best linear approximation of a function. For a function $f: \mathbb{R}^n \to \mathbb{R}^m$ it can be represented by its Jacobi matrix:

$$Df = \begin{pmatrix} \partial_1 f^1 & \dots & \partial_n f^1 \\ \vdots & & \vdots \\ \partial_1 f^m & \dots & \partial_n f^m \end{pmatrix}$$

or (if taking partial derivatives is not trivial)

$$Df(x)[h] \doteq f(x+h) - f(x)$$

In this case the equality holds only for linear terms in h.

Exercise 1 (2 points). 1. Let f be

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \mapsto \begin{cases} 0 & \text{if } x = y = 0\\ \frac{xy}{x^2 + y^2} & \text{otherwise} \end{cases}$$

Calculate the partial derivatives $\partial_1 f$ and $\partial_2 f$. What happens at $\partial_1 f(0,0)$?

2. Consider $g: \mathbb{R}^2 \to \mathbb{R}$ and $f: \mathbb{R}^2 \to \mathbb{R}$ differentiable with

$$g(x_1, x_2) = f(x_1^2, x_1 + x_2)$$

Calculate $\frac{\partial g}{\partial x_1}$ (in relation to f).

Exercise 2 (2 points). 1. Calculate the differential of

$$f_1: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (x(1-y), xyz)$

2. Calculate the differential of

$$f_2: \mathbb{R}^2 \to \mathbb{R}^3$$

 $(u, v) \mapsto (u^2 + v^2, u - v, 4v^4)$

Exercise 3 (3 points). Consider the vector spaces $U = \mathbb{R}^3$ and $V = \mathbb{R}^2$ which can be equipped with the canonical basis C_3, C_2 or the following ones:

$$X_{1} = \begin{pmatrix} \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \end{pmatrix} \qquad X_{2} = \begin{pmatrix} \begin{pmatrix} 3\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\2\\0 \end{pmatrix}, \begin{pmatrix} 10\\10\\10 \end{pmatrix} \end{pmatrix}$$
$$Y_{1} = \begin{pmatrix} \begin{pmatrix} 0.5\\0.5 \end{pmatrix}, \begin{pmatrix} 0.5\\-0.5 \end{pmatrix} \end{pmatrix} \qquad Y_{2} = \begin{pmatrix} \begin{pmatrix} 3\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\-2 \end{pmatrix} \end{pmatrix}$$

Let $L:U\to V$ be a linear mapping that can be represented by $A=\begin{pmatrix} 2&1&0\\0&1&2 \end{pmatrix}$ in the canonical basis.

- 1. Write down $\mathcal{M}_{Y_1}^{X_1}(L)$.
- 2. Write down $\mathcal{M}_{Y_2}^{X_2}(L)$.
- 3. You have $a \in U$ written in the basis X_1 with the coefficients (1, 1, 1). What is the result of applying L to a written in the canonical basis?

Tip: no need to calculate the matrix inverses by hand.