
Analysis of Three-Dimensional Shapes Computer Vision Group
F. R. Schmidt, M. Vestner, Z. Lähner Institut für Informatik
Summer Semester 2017 Technische Universität München

Weekly Exercises 6
Room: 02.09.023

Wed, 28.06.2017, 14:00-16:00
Submission deadline: Tue, 27.06.2017, 23:59 to laehner@in.tum.de

Programming: Multi-Dimensional Scaling

Download the new supplementary material. It contains an outline for the whole
exercise and code for several side tasks as well as visualizing the solution as well as
a new 3D shape with a corresponding distance matrix.

Exercise 1 (6 points). Implement the Multi-Dimensional Scaling approach to find
a correspondence between two shapes. ex6 1.m already contains an outline for
the whole procedure and you can fill in code into mds.m, alignpoints.m and
extract matching.m.

1. mds.m should contain the algorithm as explained in the lecture. It takes a
distance matrix D ∈ Rn×n and a dimension to embedd in m ∈ N. It should
return the coordinates of each point in Rm as a matrix Z ∈ Rn×m. A distance
matrix for two different shapes is included in the supplementary material.
There are two instances of each type and their vertices are ordered in the same
way, so the distances are valid for both of them. The parameters epsilon and
maxI control the minimum relative progress (if you don’t know how to compute
it, just skip it) and the maximum number of iterations.

2. alignpoints.m should align two point clouds Z1, Z2 ∈ Rm with rigid trans-
formations (i.e. translation and rotation). The result should be two point sets
Ẑ1 = {R1(z + t1)|z ∈ Z1}, Ẑ2 = {z + t2)|z ∈ Z2} that were aligned by the
optimal rigid transformations.

The translations t1, t2 can be found by computing the point clouds mean. For
the rotation we suggest to align the principal axes a1, ..., am ∈ Rm with the
standard Euclidean axes. Note that since the signs of the principal axes are
not uniquely determined, the visualization code includes sign parameters that
can be altered manually.

3. extract matching.m For each z ∈ Ẑ1 find the z′ ∈ Ẑ2 that is the nearest
neighbor. This will give you a matching (z, z′) for each point in Ẑ1. Notice
that using this procedure will not necessarily give you a bijection between both
shapes. You can use visualize matching.m to visualize your results.

The Matlab functions mean and pca might be helpful, for nearest neighbor search
you can use knnsearch.

1

