Analysis of Three-Dimensional Shapes F. R. Schmidt, M. Vestner, Z. Lähner Summer Semester 2017 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 8

Room: 02.09.023 Wed, 12.07.2017, 14:00-16:00 Submission deadline: Tue, 11.07.2017, 23:59 to laehner@in.tum.de

Mathematics: Stiffness matrix

Let X be a vector space. An *inner product* is a function $f : X \times X \to \mathbb{C}$ with the following properties:

1. $f(x, x) \ge 0 \quad \forall x \in X \text{ and } f(x, x) = 0 \Leftrightarrow x = 0$

2.
$$f(x, y) = f(y, x)$$

3. $f(x + \alpha x', y) = f(x, y) + \alpha f(x', y) \quad \forall x, x', y \in X, \alpha \in \mathbb{C}$

The standard inner product on $X = \mathbb{C}$ is defined as $\langle x, y \rangle = x^{\top} \overline{y}$. If $M \in \mathbb{R}^{n \times n}$ is a symmetric, positive definite matrix the *M*-inner product is defined by $\langle x, y \rangle_M = x^{\top} M \overline{y}$.

A linear operator $T: X \to X$ is called *self-adjoint* w.r.t. an inner product f if the following holds:

$$f(Tx, y) = f(x, Ty)$$

An *eigenvector* is an element $0 \neq x \in X$ for which there exists a scalar $\lambda \in \mathbb{C}$ such that

$$Tx = \lambda x$$

The scalar λ is called *eigenvalue*.

Exercise 1. Let $L = M^{-1}S \in \mathbb{R}^{n \times n}$ be self-adjoint w.r.t. the M inner product. Show that the following statements hold.

- 1. S is symmetric (self-adjoint) w.r.t. to the standard inner product.
- 2. The eigenvalues of L are real.
- 3. The eigenvectors v_i, v_j with respective eigenvalues $\lambda_i \neq \lambda_j$ are orthogonal.
- 4. $v_1, ..., v_k$ are eigenvectors of L with the same eigenvalue λ , then $\sum_i \alpha_i v_i$ is also an eigenvector with eigenvalue λ .

Exercise 2. Show that the diagonal entries $\mathbf{S}_{ii} = \int_{\mathcal{M}} \langle \nabla \psi_i, \nabla \psi_i \rangle$ of the stiffness matrix satisfy:

$$\mathbf{S}_{ii} = \sum_{(i,j) \text{ edge at } i} \frac{\cot \alpha_{ij} + \cot \beta_{ij}}{2} = -\sum_{j} \mathbf{S}_{ij}$$

Hints

- Consider each traingle independently
- $\int_T 1dp = \int_{T_{ref}} \sqrt{\det g} du = \operatorname{area}(T).$
- The area of a triangle can be calculated as the half of the product of an edgelenght and the corresponding height of the triangle.

Programming: Stiffness matrix

Exercise 3. Download the supplementary material from the homepage. It contains four fi

les describing two 3D triangular meshes.

- 1. Implement a function stiffness_matrix.m that takes a triangle mesh and returns a sparse stiffness matrix.
- 2. Use the **eigs** command to get the first four (ordered by magnitude of the eigenvalue, from small to big) solutions of the generalized eigenvalue problem

$$\lambda \mathbf{M} \phi_i = \mathbf{S} \phi_i$$

and visualize them

- as color coded functions on the shapes.
- as embeddings of the shapes in \mathbb{R}^3 (do not use the first one. Why?).

Hints

- Recap the construction of the mass matrix from sheet 4.
- For each triangle calculate the cot of all three angles and add them to the corresponding positions in the stiffness matrix.
- the **sparse** command automatically adds values if an entry is assigned multiple times.