Analysis of Three-Dimensional Shapes
F. R. Schmidt, M. Vestner, Z. Lähner Summer Semester 2017

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 8

Room: 02.09.023
Wed, 12.07.2017, 14:00-16:00
Submission deadline: Tue, 11.07.2017, 23:59 to laehner@in.tum.de

Mathematics: Stiffness matrix

Let X be a vector space. An inner product is a function $f: X \times X \rightarrow \mathbb{C}$ with the following properties:

1. $f(x, x) \geq 0 \quad \forall x \in X$ and $f(x, x)=0 \Leftrightarrow x=0$
2. $f(x, y)=\overline{f(y, x)}$
3. $f\left(x+\alpha x^{\prime}, y\right)=f(x, y)+\alpha f\left(x^{\prime}, y\right) \quad \forall x, x^{\prime}, y \in X, \alpha \in \mathbb{C}$

The standard inner product on $X=\mathbb{C}$ is defined as $\langle x, y\rangle=x^{\top} \bar{y}$. If $M \in \mathbb{R}^{n \times n}$ is a symmetric, positive definite matrix the M-inner product is defined by $\langle x, y\rangle_{M}=$ $x^{\top} M \bar{y}$.

A linear operator $T: X \rightarrow X$ is called self-adjoint w.r.t. an inner product f if the following holds:

$$
f(T x, y)=f(x, T y)
$$

An eigenvector is an element $0 \neq x \in X$ for which there exists a scalar $\lambda \in \mathbb{C}$ such that

$$
T x=\lambda x
$$

The scalar λ is called eigenvalue.
Exercise 1. Let $L=M^{-1} S \in \mathbb{R}^{n \times n}$ be self-adjoint w.r.t. the M inner product. Show that the following statements hold.

1. S is symmetric (self-adjoint) w.r.t. to the standard inner product.
2. The eigenvalues of L are real.
3. The eigenvectors v_{i}, v_{j} with respective eigenvalues $\lambda_{i} \neq \lambda_{j}$ are orthogonal.
4. v_{1}, \ldots, v_{k} are eigenvectors of L with the same eigenvalue λ, then $\sum_{i} \alpha_{i} v_{i}$ is also an eigenvector with eigenvalue λ.

Exercise 2. Show that the diagonal entries $\mathbf{S}_{i i}=\int_{\mathcal{M}}\left\langle\nabla \psi_{i}, \nabla \psi_{i}\right\rangle$ of the stiffness matrix satisfy:

$$
\mathbf{S}_{i i}=\sum_{(i, j) \text { edge at } i} \frac{\cot \alpha_{i j}+\cot \beta_{i j}}{2}=-\sum_{j} \mathbf{S}_{i j}
$$

Hints

- Consider each traingle independently
- $\int_{T} 1 d p=\int_{T_{\text {ref }}} \sqrt{\operatorname{det} g} d u=\operatorname{area}(T)$.
- The area of a triangle can be calculated as the half of the product of an edgelenght and the corresponding height of the triangle.

Programming: Stiffness matrix

Exercise 3. Download the supplementary material from the homepage. It contains four fi
les describing two 3D triangular meshes.

1. Implement a function stiffness_matrix.m that takes a triangle mesh and returns a sparse stiffness matrix.
2. Use the eigs command to get the first four (ordered by magnitude of the eigenvalue, from small to big) solutions of the generalized eigenvalue problem

$$
\lambda \mathbf{M} \phi_{i}=\mathbf{S} \phi_{i}
$$

and visualize them

- as color coded functions on the shapes.
- as embeddings of the shapes in \mathbb{R}^{3} (do not use the first one. Why?).

Hints

- Recap the construction of the mass matrix from sheet 4 .
- For each triangle calculate the cot of all three angles and add them to the corresponding positions in the stiffness matrix.
- the sparse command automatically adds values if an entry is assigned multiple times.

