Analysis of Three-Dimensional Shapes
F. R. Schmidt, M. Vestner, Z. Lähner Summer Semester 2017

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 1

Room: 02.09.023
Wed, 17.05.2017, 14:00-16:00
Submission deadline: Tue, 16.05.2017, 23:59 to laehner@in.tum.de

Mathematics: Calculus recap and Manifolds

Recap the definition of partial derivative if you are not familiar with it anymore. Quick introduction of notation: For a differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ the partial derivative of the j-th component of f by the i-th variable can be written as

1. $\partial_{i} f^{j}$ with $i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}$
2. $\frac{\partial f^{j}}{\partial x_{i}}$ describing the same thing but assuming that the variable are given names as is normally case (e.g. $(x, y, z) \mapsto(x, y+z))$

The notation is a matter of taste but some are less confusion depending on the situation.

The differential is the best linear approximation of a function. For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ it can be represented by its Jacobi matrix:

$$
D f=\left(\begin{array}{ccc}
\partial_{1} f^{1} & \ldots & \partial_{n} f^{1} \\
\vdots & & \vdots \\
\partial_{1} f^{m} & \ldots & \partial_{n} f^{m}
\end{array}\right)
$$

or (if taking partial derivatives is not trivial)

$$
D f(x)[h] \doteq f(x+h)-f(x)
$$

In this case the equality holds only for linear terms in h.
Exercise 1 (2 points). 1. Let f be

$$
\begin{aligned}
f: \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
(x, y) & \mapsto \begin{cases}0 & \text { if } x=y=0 \\
\frac{x y}{x^{2}+y^{2}} & \text { otherwise }\end{cases}
\end{aligned}
$$

Calculate the partial derivatives $\partial_{1} f$ and $\partial_{2} f$. What happens at $\partial_{1} f(0,0) ?$
2. Consider $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ differentiable with

$$
g\left(x_{1}, x_{2}\right)=f\left(x_{1}^{2}, x_{1}+x_{2}\right)
$$

Calculate $\frac{\partial g}{\partial x_{1}}$ (in relation to f).
Solution. 1. For $(x, y) \neq 0$:

$$
\begin{aligned}
& \partial_{x} f(x, y)=\frac{y^{3}-x^{2} y}{x^{4}+2 x^{2} y^{2}+y^{4}} \\
& \partial_{y} f(x, y)=\frac{x^{3}-y^{2} x}{x^{4}+2 x^{2} y^{2}+y^{4}}
\end{aligned}
$$

$\partial_{x} f(0,0)=0$ because $f(x, 0)=0$ and therefore $\lim _{x \rightarrow 0} f(x, 0)=0$.
2. Solution for each notation.
(a) In this case there are two different scopes for x_{1}.

$$
\begin{aligned}
\frac{\partial g}{\partial x_{1}} & =\frac{\partial f\left(x_{1}^{2}, x_{1}+x_{2}\right)}{\partial x_{1}} \frac{d x_{1}^{2}}{d x_{1}}+\frac{\partial f\left(x_{1}^{2}, x_{1}+x_{2}\right)}{\partial x_{2}} \frac{d x_{1}+x_{2}}{d x_{1}} \\
& =\frac{\partial f\left(x_{1}^{2}, x_{1}+x_{2}\right)}{\partial x_{1}} \cdot 2 x_{1}+\frac{\partial f\left(x_{1}^{2}, x_{1}+x_{2}\right)}{\partial x_{2}} \cdot 1
\end{aligned}
$$

(b)

$$
\begin{aligned}
\partial_{1} g & =\partial_{1} f\left(x_{1}^{2}, x_{1}+x_{2}\right) \frac{d x_{1}^{2}}{d x_{1}}+\partial_{2} f\left(x_{1}^{2}, x_{1}+x_{2}\right) \frac{d x_{1}+x_{2}}{d x_{1}} \\
& =\partial_{1} f\left(x_{1}^{2}, x_{1}+x_{2}\right) \cdot 2 x_{1}+\partial_{2} f\left(x_{1}^{2}, x_{1}+x_{2}\right) \cdot 1
\end{aligned}
$$

(c) You can also read out the partial derivative from the differential. We define $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, h\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, x_{1}+x_{2}\right)$ and use the chain rule.

$$
\begin{aligned}
(D g)_{(x)} \cdot e_{1} & =(D f \circ h)_{(x)} \cdot e_{1} \\
& =(D f)_{(h(x))} \cdot(D h)_{(x)} \cdot e_{1} \\
& =\left(\left(\left(\partial_{1} f\right) \circ h\right)(x) \quad\left(\left(\partial_{2} f\right) \circ h\right)(x)\right)\left(\begin{array}{cc}
\partial_{1} h^{1}(x) & \partial_{2} h^{1}(x) \\
\partial_{1} h^{2}(x) & \partial_{2} h^{2}(x)
\end{array}\right) e_{1} \\
& =\left(\left(\left(\partial_{1} f\right) \circ h\right)(x) \quad\left(\left(\partial_{2} f\right) \circ h\right)(x)\right)\left(\begin{array}{cc}
2 x_{1} & 0 \\
1 & 1
\end{array}\right) e_{1} \\
& =\left(\left(\partial_{1} f\right)(h(x)) \cdot 2 x_{1}+\left(\left(\partial_{2} f\right)(h(x))\right.\right.
\end{aligned}
$$

Exercise 2 (2 points). 1. Calculate the differential of

$$
\begin{aligned}
& f_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \\
& \quad(x, y, z) \mapsto(x(1-y), x y z)
\end{aligned}
$$

2. Calculate the differential of

$$
\begin{aligned}
f_{2}: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{3} \\
(u, v) & \mapsto\left(u^{2}+v^{2}, u-v, 4 v^{4}\right)
\end{aligned}
$$

Solution. 1.

$$
D f_{1}=\left(\begin{array}{ccc}
1-y & -x & 0 \\
y z & x z & x y
\end{array}\right)
$$

2.

$$
D f_{2}=\left(\begin{array}{cc}
2 u & 2 v \\
1 & -1 \\
0 & 16 v^{3}
\end{array}\right)
$$

Exercise 3 (3 points). Consider the vector spaces $U=\mathbb{R}^{3}$ and $V=\mathbb{R}^{2}$ which can be equipped with the canonical basis C_{3}, C_{2} or the following ones:

$$
\begin{aligned}
X_{1} & =\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right) & X_{2}=\left(\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
10 \\
10 \\
10
\end{array}\right)\right) \\
Y_{1} & =\left(\binom{0.5}{0.5},\binom{0.5}{-0.5}\right) & Y_{2}=\left(\binom{3}{3},\binom{1}{-2}\right)
\end{aligned}
$$

Let $L: U \rightarrow V$ be a linear mapping that can be represented by $A=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 1 & 2\end{array}\right)$ in the canonical basis.

1. Write down $\mathcal{M}_{Y_{1}}^{X_{1}}(L)$.
2. Write down $\mathcal{M}_{Y_{2}}^{X_{2}}(L)$.
3. You have $a \in U$ written in the basis X_{1} with the coefficients $(1,1,1)$. What is the result of applying L to a written in the canonical basis?

Tip: no need to calculate the matrix inverses by hand.
Solution. Note: in the first version of the slides the formula for $\mathcal{M}_{Y}^{X}(L)$ was wrong.
Notice that A is written in the canonical basis, so actually $A=(M)_{C_{2}}^{C_{3}}(L)$ and a basis transformation from/to B is a form of a linear mapping of the identity. You could write it as $\mathcal{M}_{B}^{C_{n}}(I d)=B^{-1}$ and $\mathcal{M}_{C_{n}}^{B}(I d)=B$. You cannot simply apply the formula from lecture because there A was given in some non-canonical basis and here the input and outputs are supposed to be non-canonical.
1.

$$
\begin{aligned}
\mathcal{M}_{Y_{1}}^{X_{1}}(L) & =Y_{1}^{-1} \cdot A \cdot X_{1} \quad=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
2 & 4 & 6 \\
2 & 2 & 0
\end{array}\right)
\end{aligned}
$$

2.

$$
\begin{aligned}
\mathcal{M}_{Y_{2}}^{X_{2}}(L) & =Y_{2}^{-1} \cdot A \cdot X_{2} \quad=\left(\begin{array}{ll}
0 . \overline{1} & 0 . \overline{2} \\
1 / 3 & 1 / 3
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
3 & 0 & 10 \\
0 & 2 & 10 \\
0 & 0 & 10
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 . \overline{3} & 0 . \overline{6} & 10 \\
2 & 0 & 0
\end{array}\right)
\end{aligned}
$$

3. We need to calculate $(M)_{C_{2}}^{X_{1}}(L)=A \cdot X_{1}=\left(\begin{array}{lll}2 & 3 & 3 \\ 0 & 1 & 3\end{array}\right)=B$. And $B \cdot a^{\top}=\binom{8}{4}$.
