
Analysis of Three-Dimensional Shapes Computer Vision Group
F. R. Schmidt, M. Vestner, Z. Lähner Institut für Informatik
Summer Semester 2017 Technische Universität München

Weekly Exercises 3
Room: 02.09.023

Wed, 07.06.2017, 14:00-16:00
Submission deadline: Tue, 06.06.2017, 23:59 to laehner@in.tum.de

Mathematics: Parametrization

Exercise 1 (2 points). Consider two parametrizations of an arc

ci : [0, 1]→ R2

c1 : t 7→
(

cos(t)
sin(t)

)
, c2 : t 7→

(
cos(t2)
sin(t2)

)
And the function

f :S1 → R
(x, y) 7→ y

Calculate the integrals
∫ 1

0
(f ◦ ci)(t)dt and compare the results to the line integrals.

Solution. Normal integrals:∫ 1

0

(f ◦ c1)(t)dt =

∫ 1

0

sin(t)dt = 0.46∫ 1

0

(f ◦ c2)(t)dt =

∫ 1

0

sin(t2)dt = 0.3

Line Integral: ∫
Γ

f(s)(d)s =

∫ 1

0

(f ◦ ci)(t) · ||c′i(t)||dt∫ 1

0

(f ◦ c1)(t) · ||c′1(t)|| dt =

∫ 1

0

f(c1(t)) · ||
(
− sin(t)
cos(t)

)
||dt

=

∫ 1

0

sin(t)
√

sin(t)2 + cos(t)2dt = 0.46∫ 1

0

(f ◦ c2)(t) · ||c′2(t)|| dt =

∫ 1

0

f(c2(t)) · ||
(
−2t sin(t2)
2t cos(t2)

)
||dt

=

∫ 1

0

sin(t2)
√

4t2 sin(t2)2 + 4t2 cos(t2)2dt = 0.46

Exercise 2 (2 points). Show that the push-forward is a linear mapping.

1

Solution. For a linear mapping we have to show that

Df(p)[v1 + v2] = Df(p)[v1] +Df(p)[v2]

Df(p)[λv] = λDf(p)[v]

when f : M → N .
We will use the definition of the push-forward using curves but the proof can

as easily (maybe even easierly) with the differentials of x and f . Let x : U → M
be a coordinate map w.l.o.g. 0 ∈ U ⊂ Rd and x(0) = p as well as f(p) = q. Let
u, v ∈ TpM then there exist hu, hv ∈ Rd such that

cu : (−ε, ε)→M t 7→ x(t · hu)
cv : (−ε, ε)→M t 7→ x(t · hv)

They define the equivalence classes [cu] = u and [cv] = v for which hold that
cu/v(0) = p and Dcu/v(0) = u/v. Further, we have

f ◦ cu : (−ε, ε)→ N

f ◦ cv : (−ε, ε)→ N

and it follows by definition that [f ◦ cu] ∈ TqN and [f ◦ cv] ∈ TqN . We define
[cu] + [cv] = [cu+v] by

cu+v : (−ε, ε)→M

t 7→ x(t · (hu + hv))

cλ : (−ε, ε)→M

t 7→ x(t · λhu)

Df(p)[cu+v] = [f ◦ cu+v]

= [(f ◦ x)(t · (hu + hv))]

=
∂

∂t
((f ◦ x)(t · (hu + hv))) |t=0

=
∂(f ◦ x)

∂t
(t · (hu + hv)) · (hu + hv) |t=0

=
∂(f ◦ x)

∂t
(0) · hu +

∂(f ◦ x)

∂t
(0) · hv

= [f ◦ cu] + [f ◦ cv]
= Df(p)[cu] +Df(p)[cv]

and

2

Df(p)[cλ] = [f ◦ cλ]
= [(f ◦ x)(t · λhu)]

=
∂

∂t
(f ◦ x)(t · λhu) |t=0

=
∂(f ◦ x)

∂t
(t · λhu) · λhu |t=0

= λ · ∂(f ◦ x)

∂t
(0)hu

= λ[f ◦ cu]
= λ ·Df(p)[cu]

Programming: 2D Shape Features

Download the supplementary material from the homepage. It contains some black-
white silhouette images from the MPEG7 dataset
(http://www.dabi.temple.edu/˜shape/MPEG7/dataset.html), a function
extract pointwise contour.m to extract a contour as a sequence of 2D coordi-
nates, LAP.m solving Linear Assignment Problems (actually not with the Hungarian
method...) and visualise matching.m. Please also submit your code.

Exercise 3 (2 points). Read out the image files bat-9.gif, device7-1.gif,
turtle-1.gif into matrices (use imread, it reads positive integers. Changing the
type to double will help). Include an image for each sub-exercise in your solution
sheet.

1. Calculate the curvature on the contour. It can be seen as the level set function
somewhere between 0 and 1 so the formula κ(p) = div

(
∇F (·)
||∇F (·)||

)
(p) from the

lecture can be used. There are imgradient and imgradientxy in Matlab or
implement your own finite difference gradient as an exercise (it’s quite easy).
The divergence can be calculated with divergence.

2. The result from the last exercise was pretty ugly. The reason is that the
function we considered was not smooth but went zig-zag along the edges of the
pixels. Use a gaussian filter on the image before calculating the curvature. (See
imgaussfilt) Use the extract contour.m from the supplementary material
to get a binary mask for the contour with different thickness. Play around
with different σ for the filter and thicknesses of the mask.

Exercise 4 (1 point). In most applications we want to find out which shapes are
similar to each other. Create a descriptor for each shape in the supplementary
material and create a histogram of the different curvatures on the contour (don’t
forget to normalize because normally the contours will not have the same amount
of points). There is a Matlab function histogram if you are not familiar with
histograms.

3

Compare the descriptor of device7-1 to all other descriptors (for example with the
Euclidean distance) and sort the remaining shapes in order of similarity to device7-1.

Exercise 5 (2 points). Extract pointwise contours of the images bat-9.gif,
device7-1.gif and turtle-1.gif with 100 points.

1. Calculate the integral invariant on each image and evaluate them at the point-
wise contour. Try gaussians kernel with sizes of 10×10, 32×32, 100×100 and
200× 200. (For the std deviations 3, 10, 30, 80) Include figures of your results
in your solution sheet (try scatter with colors for the pointwise contour and
fspecial, conv2, interp2 for the feature).

2. Calculate the shape context on the images with a 101 × 101 kernel divided
into 3 different radii and 10 different angles (in the lecture the kernel had 2
radii and 3 angles but this is not enough for real applications). This means
you have to produce 30 different kernels and your feature at each point on the
contour will be a R30 vector.

Exercise 6 (2 points). Calculate the best matching between the pointwise contours
of turtle-1.gif to turtle-19.gif and apple-20.gif. Create the 3 cost matrices
for the linear assignment problem with the 3 different features (curvature, integral
invariant, shape context) and the distance functions proposed in the lecture. Choose
the parameters that you think will work the best. Then solve for the permutation
with LAP.m from the supplementary material. You can visualise your results with
visualise matching.m giving both pointwise contours and your permutation as an
input. Points with the same color are matched to each other. Are the matchings
reasonable?

4

