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Mathematics: Triangle Meshes

Exercise 1 (4 points). Recap the hat functions on triangles, the first fundamental
form and the derivation of the mass matrix in 2D from the lecture.

1. Derive the mass matrix for 3D triangular meshes with the hat functions φi as
a basis. Each entry can be calculated by taking Mij =

∫
M φi(p)φj(p)dp. It will

help to use a reference triangle with vertices (0, 0), (1, 0), (0, 1) and deconstruct
the integral for each triangle. The final matrix should look like this:

Mij =


area(T1)+area(T2)

12
(i, j) is an edge∑

Tk∈N(i)
area(Tk)

6
i = j

0 otherwise

T1, T2 are triangles that share the edge (i, j). N(i) is the set of triangles
adjacent to vertex i.

2. Show that the mass matrix is symmetric and positive definite. With this
properties we know that it defines an inner product 〈f ,g〉M = f>Mg (and
therefore also induces a norm).

Solution. 1. Since our parametrization consists of triangles, we need to decon-
struct the integral into separate integrals for each triangle and sum these up:

Mjk =

∫
S

ψj(p)ψk(p)dp =
m∑
i=1

∫
Ti

ψj(p)ψk(p)dp

Notice that the integral is zero if neither vertex j nor k is adjacent to Ti.
This leaves two cases: j = k or j, k are connected by an edge. We solve
for both separately. First, we introduce a reference triangle with vertices
(0, 0), (1, 0), (0, 1) and a coordinate mapping xk : Tref → Tk that maps each
vertex of the reference triangle to a vertex of Tk. Let u = (0, 1) and v = (1, 0)
then we can write any point in the reference triangle as a convex combination
of u, v. The same holds for any point Tk that can be represented by a convex
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combination of the vectors l, k which are the mappings of u, v by Dxk. As a
formula:

xk(u, v) = u · l + v · k

Dxk(u, v) =

l1 k1
l2 k2
l3 k3


gxk = Dx>kDxk =

(
‖l‖22 〈k, l〉
〈k, l〉 ‖k‖22

)
Since we need it later we already derive

√
det(gxk) = 2area(Tk). A lot of

trigonometry is involved. We denote the angle between l and k with α.√
det(gxk) =

√
‖l‖22‖k‖22 − 〈k, l〉2

=
√
‖l‖22‖k‖22 · (1− cos(α)2)︸ ︷︷ ︸

=sin(α)2

= 2 · area(Tk)

Finally, we handle each case (j = k, (j, k) edge) separatly:

Mjj =
∑
k∈Nj

∫
Tk

ψj(p)
2dp

∫
Tk

ψj(p)
2dp =

∫ 1

0

∫ 1−u

0

ψj(xk(u, v))2 ·
√

det(Dx>Dx) dvdu

= 2 · area(Tk)

∫ 1

0

∫ 1−u

0

(1− u− v)2 dv du

= 2 · area(Tk)

∫ 1

0

∫ 1−u

0

(u2 + v2 + 2uv − 2u− 2v + 1) dv du

= 2 · area(Tk)

∫ 1

0

[
u2v + 1/3v3 + uv2 − 2uv − v2 + v

]1−u
0

du

= 2 · area(Tk)

∫ 1

0

1

3
(1− u)3du

= 2 · area(Tk)

[
− 1

12
(1− u)4

]1
0

= 2 · area(Tk) ·
1

12
=

1

6
area(Tk)

In the second case it is important to remember that the functions are one at
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different vertices.

Mij =
∑

k∈Ni∩Nj

∫
Tk

ψj(p)ψi(p)dp∫
Tk

ψj(p)ψi(p)dp =

∫ 1

0

∫ 1−u

0

ψj(xk(u, v)) · ψi(xk(u, v)) ·
√

det(Dx>Dx) dvdu

= 2 · area(Tk)

∫ 1

0

∫ 1−u

0

(1− u− v) · u dvdu

= 2 · area(Tk)

∫ 1

0

(
1

2
u3 − u2 +

1

2
u

)
du

= 2 · area(Tk)
1

24
=

1

12
· area(Tk)

2. For symmetric we have to show that Mij = Mji which automatically follows
from

Mij =
1

12

∑
k∈Ni∩Nj

area(Tk)

For positive definiteness we can argue by the construction of M

f>M f =

∫
S

f(x)2dx > 0 ∀ f 6= 0

or use the result that real, symmetric, weak diagonal dominant matrices with
positive entries on the diagonal are positive definite (Carl D. Meyer, Matrix
Analysis and Applied Linear Algebra).

Programming: Also Triangle Meshes

Download the supplementary material from the homepage. It contains two files
describing a 3D triangular mesh.

Exercise 2 (3 points). We represent 3D shapes as triangle meshes M = (V ,F)
embedded in R3. They consist of vertices V = {v1, ..., vn} and triangles F ⊂ V×V×V
connecting them to a closed surface. The coordinates of each vertex are denoted by
p(vi) ∈ R3. Note that the vertices of a triangle t = (u, v, w) ∈ F are ordered. We
define triangles to be identical if they can be transformed into each other by a cyclic
permutation, i.e. (u, v, w) = (v, u, v) = (w, u, v) but (u, v, w) 6= (w, v, u). The order
defines the direction of the normal and is also called orientation.

1. There are different formats to store triangle meshes. The easiest one is the
vert-tri format consisting of two files, one containing the 3D coordinates and
the other one the triangles. The file name.vert contains n rows with three
double numbers separated by tabs. Each row represents one 3D coordinate.
The file name.tri (note that the file name has to be the same as for the
.vert) contains m rows with three positive integer values x ≤ n. Each x refers
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to a row/vertex from the .vert file. The order of x in each row defines the
orientation of the triangle. Write a function read vert tri.m that takes a
filename and returns a struct M with fields M.VERT a n× 3 array and M.TRIV a
m×3 array. You can try your function on the cat0 files from the supplementary
material (and see if you did everything correctly in the next part).

2. Triangulated surfaces can be plotted in Matlab with trisurf(TRI, X, Y, Z).
You need to give each column of M.VERT separatly to the function. The colors
you see on the surface represent the height function.

3. Implement a function facearea that takes a triangle mesh struct as an input
and returns a Rm vector containing the area of each triangle. You can plot
your function by using trisurf(TRI, X, Y, Z, f) where f is a vector with
as many entries as the numbers of vertices or faces. (Of course the entries
in the vector must be ordered in the same way as the vertices or faces they
correspond to.)

4. Implement a function mass matrix.m that takes a triangle mesh and returns
a sparse (that’s a Matlab type) mass matrix as in Exercise 1. (No need to do
anything we it, we will use it in later exercise sheets.)
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