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Convex Optimization

Notations

• E is a Euclidean space (finite dimensional vector space),
equipped with the inner product 〈·, ·〉, e.g. 〈u, v〉 = u>v .

• C is a closed, convex subset of E.
• J is a convex objective function.

Convex optimization

minimize J(u) over u ∈ C.

First questions:
• What is a convex set?
• What is a convex function?
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Convex set

Definition

A set C is said to be convex if

αu + (1− α)v ∈ C, ∀u, v ∈ C, ∀α ∈ [0,1].

convex non-convex
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Recall basic concepts in analysis

Definition

• A set C ⊂ E is open if ∀u ∈ C, ∃ε > 0 s.t. Bε(u) ⊂ C,
where Bε(u) := {v ∈ E : ‖v − u‖ < ε}.

• A set C ⊂ E is closed if its complement E\C is open.
• The closure of a set C ⊂ E is

cl C = {u ∈ E : ∃{uk} ⊂ C s.t. lim
k→∞

uk = u}.

• The interior of a set C ⊂ E is

int C = {u ∈ C : ∃ε > 0 s.t. Bε(u) ⊂ C}.

• The relative interior of a convex set C ⊂ E is

rint C = {u ∈ C : ∀v ∈ C,∃α > 1 s.t. v + α(u − v) ∈ C}.
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Basic properties

The following operations preserve the convexity:
• Intersection: C1 ∩ C2

• Summation: C1 + C2 := {u1 + u2 : u1 ∈ C1,u2 ∈ C2}
• Closure: cl C
• Interior: int C

– The union of convex sets is not convex in general.

– Polyhedral sets are always convex; cones are not necessarily
convex.

Convex cone

C is a cone if C = αC for any α > 0. C is a convex cone if C
is a cone and is convex as well.
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Separation of convex sets

Source: Wikipedia.

Theorem (separation of convex sets)

Let C1, C2 be nonempty convex subsets in E s.t. C1 ∩ C2 = ∅
and C1 is open. Then there exists a hyperplane separating C1
and C2, i.e. ∃v ∈ E, v 6= 0, α ∈ R s.t.〈

v ,u1〉 ≥ α ≥ 〈
v ,u2〉 , ∀u1 ∈ C1, u2 ∈ C2.

Proof: on board.

Remarks

1 The above theorem generalizes to any topological vector
space (e.g. Banach- or Hilbert-space), known as the
Hahn-Banach theorem.

2 In a reflexive Banach space, any (strongly) closed convex
subset C is weakly closed.
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