Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Chapter 1 Convex Analysis

Convex Optimization for Machine Learning & Computer Vision SS 2018

Tao Wu Emanuel Laude Zhenzhang Ye

Computer Vision Group Department of Informatics TU Munich

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex Set

updated 16.04.2018

Convex Optimization

Notations

- E is a Euclidean space (finite dimensional vector space), equipped with the inner product ⟨·, ·⟩, e.g. ⟨u, v⟩ = u^Tv.
- C is a closed, convex subset of \mathbb{E} .
- *J* is a convex objective function.

Convex optimization

```
minimize J(u) over u \in C.
```

First questions:

- What is a convex set?
- What is a convex function?

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex set

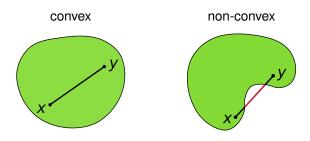
Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

onvex Set

A set C is said to be **convex** if

$$\alpha u + (1 - \alpha)v \in C, \quad \forall u, v \in C, \forall \alpha \in [0, 1].$$



Recall basic concepts in analysis

Definition

- A set C ⊂ E is open if ∀u ∈ C, ∃ε > 0 s.t. B_ε(u) ⊂ C, where B_ε(u) := {v ∈ E : ||v − u|| < ε}.
- A set $C \subset \mathbb{E}$ is **closed** if its complement $\mathbb{E} \setminus C$ is open.
- The **closure** of a set $\mathcal{C} \subset \mathbb{E}$ is

$$\operatorname{cl} C = \{ u \in \mathbb{E} : \exists \{ u^k \} \subset C \text{ s.t. } \lim_{k \to \infty} u^k = u \}.$$

• The interior of a set $\mathcal{C} \subset \mathbb{E}$ is

$$\mathsf{int}\, \boldsymbol{C} = \{\boldsymbol{u} \in \boldsymbol{C} : \exists \epsilon > \mathsf{0} \; \mathsf{s.t.} \; \boldsymbol{B}_{\epsilon}(\boldsymbol{u}) \subset \boldsymbol{C} \}.$$

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

updated 16.04.2018

Recall basic concepts in analysis

Definition

- A set C ⊂ E is open if ∀u ∈ C, ∃ε > 0 s.t. B_ε(u) ⊂ C, where B_ε(u) := {v ∈ E : ||v − u|| < ε}.
- A set $C \subset \mathbb{E}$ is **closed** if its complement $\mathbb{E} \setminus C$ is open.
- The **closure** of a set $\mathcal{C} \subset \mathbb{E}$ is

$$\mathsf{cl} \ C = \{ u \in \mathbb{E} : \exists \{ u^k \} \subset C \text{ s.t. } \lim_{k \to \infty} u^k = u \}.$$

• The interior of a set $\mathcal{C} \subset \mathbb{E}$ is

int $C = \{u \in C : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(u) \subset C\}.$

• The **relative interior** of a <u>convex</u> set $C \subset \mathbb{E}$ is

rint
$$C = \{ u \in C : \forall v \in C, \exists \alpha > 1 \text{ s.t. } v + \alpha(u - v) \in C \}.$$

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Basic properties

The following operations preserve the convexity:

- Intersection: $C_1 \cap C_2$
- Summation: $C_1 + C_2 := \{u^1 + u^2 : u^1 \in C_1, u^2 \in C_2\}$
- Closure: cl C
- Interior: int C
- The union of convex sets is not convex in general.

Tao Wu Emanuel Laude Zhenzhang Ye

updated 16.04.2018

Basic properties

The following operations preserve the convexity:

- Intersection: $C_1 \cap C_2$
- Summation: $C_1 + C_2 := \{u^1 + u^2 : u^1 \in C_1, u^2 \in C_2\}$
- Closure: cl C
- Interior: int C
- The union of convex sets is not convex in general.

- *Polyhedral sets* are always convex; *cones* are not necessarily convex.

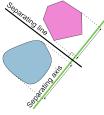
Convex cone

C is a **cone** if $C = \alpha C$ for any $\alpha > 0$. *C* is a **convex cone** if *C* is a convex as well.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Separation of convex sets



Source: Wikipedia.

Theorem (separation of convex sets)

Let C_1 , C_2 be nonempty convex subsets in \mathbb{E} s.t. $C_1 \cap C_2 = \emptyset$ and C_1 is open. Then there exists a hyperplane separating C_1 and C_2 , i.e. $\exists v \in \mathbb{E}, v \neq 0, \alpha \in \mathbb{R}$ s.t.

$$\langle \mathbf{v}, \mathbf{u}^1 \rangle \geq \alpha \geq \langle \mathbf{v}, \mathbf{u}^2 \rangle, \quad \forall \mathbf{u}^1 \in C_1, \ \mathbf{u}^2 \in C_2.$$

Proof: on board.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Separation of convex sets

Theorem (separation of convex sets)

Let C_1 , C_2 be nonempty convex subsets in \mathbb{E} s.t. $C_1 \cap C_2 = \emptyset$ and C_1 is open. Then there exists a hyperplane separating C_1 and C_2 , i.e. $\exists v \in \mathbb{E}, v \neq 0, \alpha \in \mathbb{R}$ s.t.

$$\langle \mathbf{v}, \mathbf{u}^1 \rangle \geq \alpha \geq \langle \mathbf{v}, \mathbf{u}^2 \rangle, \quad \forall \mathbf{u}^1 \in C_1, \ \mathbf{u}^2 \in C_2.$$

Proof: on board.

Remarks

- 1 The above theorem generalizes to any topological vector space (e.g. Banach- or Hilbert-space), known as the *Hahn-Banach theorem*.
- In a reflexive Banach space, any (strongly) closed convex subset C is weakly closed.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set