Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set Convex Function Existence of Minimizer

Tao Wu Emanuel Laude Zhenzhang Ye

Computer Vision Group Department of Informatics TU Munich

Chapter 1 Convex Analysis

Convex Optimization for Machine Learning & Computer Vision SS 2018

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Convex Set

Convex Optimization

Notations

- E is a Euclidean space (finite dimensional vector space), equipped with the inner product ⟨·, ·⟩, e.g. ⟨u, v⟩ = u^Tv.
- C is a closed, convex subset of \mathbb{E} .
- *J* is a convex objective function.

Convex optimization

```
minimize J(u) over u \in C.
```

First questions:

- What is a convex set?
- What is a convex function?

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

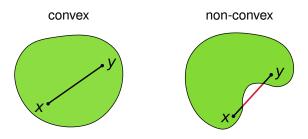
Convex Set

Convex set

Definition

A set C is said to be **convex** if

$$\alpha u + (1 - \alpha)v \in C, \quad \forall u, v \in C, \forall \alpha \in [0, 1].$$



Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex Function

Recall basic concepts in analysis

Definition

- A set C ⊂ E is open if ∀u ∈ C, ∃ε > 0 s.t. B_ε(u) ⊂ C, where B_ε(u) := {v ∈ E : ||v − u|| < ε}.
- A set $C \subset \mathbb{E}$ is **closed** if its complement $\mathbb{E} \setminus C$ is open.
- The **closure** of a set $C \subset \mathbb{E}$ is

$$\operatorname{cl} C = \{ u \in \mathbb{E} : \exists \{ u^k \} \subset C \text{ s.t. } \lim_{k \to \infty} u^k = u \}.$$

• The interior of a set $\mathcal{C} \subset \mathbb{E}$ is

$$\mathsf{int}\, \boldsymbol{C} = \{\boldsymbol{u} \in \boldsymbol{C} : \exists \epsilon > \mathsf{0} \; \mathsf{s.t.} \; \boldsymbol{B}_{\epsilon}(\boldsymbol{u}) \subset \boldsymbol{C} \}.$$

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex Function

Recall basic concepts in analysis

Definition

- A set C ⊂ E is open if ∀u ∈ C, ∃ε > 0 s.t. B_ε(u) ⊂ C, where B_ε(u) := {v ∈ E : ||v − u|| < ε}.
- A set $C \subset \mathbb{E}$ is **closed** if its complement $\mathbb{E} \setminus C$ is open.
- The **closure** of a set $C \subset \mathbb{E}$ is

$$cl C = \{u \in \mathbb{E} : \exists \{u^k\} \subset C \text{ s.t. } \lim_{k \to \infty} u^k = u\}.$$

• The interior of a set $\mathcal{C} \subset \mathbb{E}$ is

int $C = \{ u \in C : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(u) \subset C \}.$

• The relative interior of a set $C \subset \mathbb{E}$ is

rint
$$C := \{ u \in C : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(u) \cap \text{aff } C \subset C \}$$

= $\{ u \in C : \forall v \in C, \exists \alpha > 1 \text{ s.t. } v + \alpha(u - v) \in C \}$

if C is convex. Here aff C stands for the **affine hull** of C.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Function

Basic properties

The following operations preserve the convexity:

- Intersection: C₁ ∩ C₂
- Summation: $C_1 + C_2 := \{u^1 + u^2 : u^1 \in C_1, u^2 \in C_2\}$
- Closure: cl C
- Interior: int C
- The union of convex sets is not convex in general.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Basic properties

The following operations preserve the convexity:

- Intersection: $C_1 \cap C_2$
- Summation: $C_1 + C_2 := \{u^1 + u^2 : u^1 \in C_1, u^2 \in C_2\}$
- Closure: cl C
- Interior: int C
- The union of convex sets is not convex in general.

Polyhedral sets are always convex; cones are not necessarily convex.

Convex cone

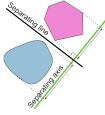
C is a **cone** if $C = \alpha C$ for any $\alpha > 0$. *C* is a **convex cone** if *C* is a convex as well.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Function Existence of Minimizer

Separation of convex sets



Source: Wikipedia.

Theorem (separation of convex sets)

Let C_1 , C_2 be nonempty convex subsets in \mathbb{E} s.t. $C_1 \cap C_2 = \emptyset$ and C_1 is open. Then there exists a hyperplane separating C_1 and C_2 , i.e. $\exists v \in \mathbb{E}, v \neq 0, \alpha \in \mathbb{R}$ s.t.

$$\langle \mathbf{v}, \mathbf{u}^1 \rangle \geq \alpha \geq \langle \mathbf{v}, \mathbf{u}^2 \rangle, \quad \forall \mathbf{u}^1 \in C_1, \ \mathbf{u}^2 \in C_2.$$

Proof: on board.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex Function Existence of Minimizer

Separation of convex sets

Theorem (separation of convex sets)

Let C_1 , C_2 be nonempty convex subsets in \mathbb{E} s.t. $C_1 \cap C_2 = \emptyset$ and C_1 is open. Then there exists a hyperplane separating C_1 and C_2 , i.e. $\exists v \in \mathbb{E}, v \neq 0, \alpha \in \mathbb{R}$ s.t.

$$\left\langle \mathbf{v}, \mathbf{u}^{1} \right\rangle \geq \alpha \geq \left\langle \mathbf{v}, \mathbf{u}^{2} \right\rangle, \quad \forall \mathbf{u}^{1} \in \mathbf{C}_{1}, \ \mathbf{u}^{2} \in \mathbf{C}_{2}.$$

Proof: on board.

Remarks

- 1 The proof works in any Hilbert space.
- 2 Corollary: In a Hilbert space, any (strongly) closed convex subset C is weakly closed.
- 3 The above theorem generalizes to any topological vector space, known as the Hahn-Banach theorem.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Eurotion

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Convex Function

Convex functions

- An extended real-valued function J maps from \mathbb{E} to $\overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}.$
- The **domain** of $J : \mathbb{E} \to \overline{\mathbb{R}}$ is

dom $J = \{u \in \mathbb{E} : J(u) < \infty\}.$

• The function $J : \mathbb{E} \to \overline{\mathbb{R}}$ is **proper** if dom $J \neq \emptyset$.

Definition

We say $J: \mathbb{E} \to \overline{\mathbb{R}}$ is a convex function if

1 dom J is a convex set.

2 For all $u, v \in \text{dom } J$ and $\alpha \in [0, 1]$ it holds that

$$J(\alpha u + (1 - \alpha)v) \leq \alpha J(u) + (1 - \alpha)J(v).$$

We say *J* is **strictly convex** if the above inequality is strict for all $\alpha \in (0, 1)$ and $u \neq v$.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex Function

Examples

- $J_{data}(u) = \|u f\|_q^q$ where $q \ge 1$ and $\|\cdot\|_q$ is the ℓ^q -norm.
- $J_{regu}(u) = ||Ku||_p^p$ where K is linear transform and $p \ge 1$.
- $J(u) = J_{data}(u) + \alpha J_{regu}(u)$.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex Function

Examples

- $J_{data}(u) = \|u f\|_q^q$ where $q \ge 1$ and $\|\cdot\|_q$ is the ℓ^q -norm.
- $J_{regu}(u) = ||Ku||_p^p$ where K is linear transform and $p \ge 1$.
- $J(u) = J_{data}(u) + \alpha J_{regu}(u)$.
- (Binary) entropy: $J_{\epsilon}(u) = \epsilon (u \log(u) + (1 u) \log(1 u)).$
- Soft max: $J_{\epsilon}^*(v) = \epsilon \log(1 + \exp(v/\epsilon)) \approx \max(v, 0).$

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex Function

Examples

- $J_{data}(u) = \|u f\|_q^q$ where $q \ge 1$ and $\|\cdot\|_q$ is the ℓ^q -norm.
- $J_{regu}(u) = ||Ku||_p^p$ where K is linear transform and $p \ge 1$.
- $J(u) = J_{data}(u) + \alpha J_{regu}(u)$.
- (Binary) entropy: $J_{\epsilon}(u) = \epsilon (u \log(u) + (1 u) \log(1 u)).$
- Soft max: $J_{\epsilon}^{*}(v) = \epsilon \log(1 + \exp(v/\epsilon)) \approx \max(v, 0).$
- Indicator function (*C* ⊂ 𝔼 is closed and convex):

$$\delta_{\mathcal{C}}(u) = egin{cases} \mathsf{0} & ext{if } u \in \mathcal{C}, \ \infty & ext{otherwise} \end{cases}$$

Formulate constrained optimization with indicator function:

 $\min J(u) \text{ over } u \in C. \iff \min J(u) + \delta_C(u) \text{ over } u \in \mathbb{E}.$

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex Function

Basic facts

(As exercises)

- Any norm (over a normed vector space) is a convex function.
- *J* is a convex function and *K* is a linear transform ⇒ *J*(*K*·) is convex function.
- (Jensen's inequality) $J:\mathbb{E}\to\overline{\mathbb{R}}$ is convex iff

$$J\left(\sum_{i=1}^n \alpha_i \boldsymbol{u}^i\right) \leq \sum_{i=1}^n \alpha_i J(\boldsymbol{u}^i),$$

whenever $\{u^i\}_{i=1}^n \subset \mathbb{E}, \{\alpha_i\}_{i=1}^n \subset [0, 1], \sum_{i=1}^n \alpha_i = 1.$

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

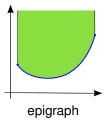
Convex Function

Epigraph

Definition

The **epigraph** of a proper function $J : \mathbb{E} \to \overline{\mathbb{R}}$ is

$$\mathsf{epi}\, m{J} = \{(m{u}, lpha) \in \mathbb{E} imes \mathbb{R} : m{J}(m{u}) \leq lpha \}.$$



Theorem

A proper function $J : \mathbb{E} \to \overline{\mathbb{R}}$ is convex (resp. strictly convex) iff epi *J* is a convex (resp. strictly convex) set.

Proof: as exercise.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex Function

Lipschitz continuity

Definition

Assume $J : \mathbb{E} \to \overline{\mathbb{R}}$ with rint dom $J \neq \emptyset$. We say J is **locally Lipschitz** at $u \in \text{rint dom } J$ with modulus $L_u > 0$ if there exists $\epsilon > 0$ s.t.

 $|J(u^1) - J(u^2)| \le L_u \|u^1 - u^2\| \quad \forall u^1, u^2 \in B_{\epsilon}(u) \cap \operatorname{rint} \operatorname{dom} J.$

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex Function

Lipschitz continuity

Definition

Assume $J : \mathbb{E} \to \overline{\mathbb{R}}$ with rint dom $J \neq \emptyset$. We say J is **locally Lipschitz** at $u \in \text{rint dom } J$ with modulus $L_u > 0$ if there exists $\epsilon > 0$ s.t.

$$|J(u^1) - J(u^2)| \le L_u ||u^1 - u^2|| \quad \forall u^1, u^2 \in B_{\epsilon}(u) \cap \operatorname{rint} \operatorname{dom} J_{\epsilon}$$

Theorem

A proper convex function $J : \mathbb{E} \to \overline{\mathbb{R}}$ is locally Lipschitz at any $u \in \text{rint dom } J$. Proof: on board.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set

Convex Function

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set Convex Function

Existence of Minimizer

Global vs. Local minimizer

Recall the optimization of $J : \mathbb{E} \to \overline{\mathbb{R}}$:

minimize J(u) over $u \in \mathbb{E}$.

Definition

- 1 $u^* \in \mathbb{E}$ is a global minimizer if $J(u^*) \leq J(u)$ for all $u \in \mathbb{E}$.
- 2 u^* is a local minimizer if $\exists \epsilon > 0$ s.t. $J(u^*) \leq J(u)$ for all $u \in B_{\epsilon}(u^*)$.
- In the above definitions, a global/local minimizer is strict if J(u*) ≤ J(u) is replaced by J(u*) < J(u).

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set Convex Function

Global vs. Local minimizer

Recall the optimization of $J : \mathbb{E} \to \overline{\mathbb{R}}$:

minimize J(u) over $u \in \mathbb{E}$.

Definition

- 1 $u^* \in \mathbb{E}$ is a global minimizer if $J(u^*) \leq J(u)$ for all $u \in \mathbb{E}$.
- 2 u^* is a local minimizer if $\exists \epsilon > 0$ s.t. $J(u^*) \leq J(u)$ for all $u \in B_{\epsilon}(u^*)$.
- In the above definitions, a global/local minimizer is strict if *J*(*u*^{*}) ≤ *J*(*u*) is replaced by *J*(*u*^{*}) < *J*(*u*).

Theorem

For any proper convex function $J : \mathbb{E} \to \overline{\mathbb{R}}$, if $u^* \in \text{dom } J$ is a local minimizer of J, then it is also a global minimizer.

Proof: on board.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set Convex Function

Does a minimizer always exist?

Consider

minimize J(u) over $u \in \mathbb{E}$, where $J : \mathbb{E} \to \overline{\mathbb{R}}$ is a proper, convex function.

• Some counterexamples for $J : \mathbb{R} \to \overline{\mathbb{R}}$:

 We shall formalize our observations and derive sufficient conditions for existence.

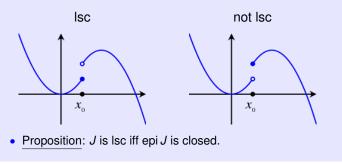
Tao Wu Emanuel Laude Zhenzhang Ye

Sufficient conditions for existence

Definition

- **1** *J* is **bounded from below** if $J(\cdot) \ge C$ for some $C \in \mathbb{R}$.
- **2** *J* is **coercive** if $J(u) \to \infty$ whenever $||u|| \to \infty$.
 - Proposition: *J* is coercive if dom *J* is bounded.
- **3** J is **lower semi-continuous** (lsc) at u^* if

 $J(u^*) \leq \liminf_{u \to u^*} J(u).$



Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Sufficient conditions for existence

Definition

1 *J* is **bounded from below** if $J(\cdot) \ge C$ for some $C \in \mathbb{R}$.

2 *J* is **coercive** if $J(u) \to \infty$ whenever $||u|| \to \infty$.

3 J is lower semi-continuous (lsc) at u^* if

 $J(u^*) \leq \liminf_{u \to u^*} J(u).$

Theorem

Any proper function $J : \mathbb{E} \to \mathbb{R}$, which is bounded from below, coercive, and lsc (everywhere), has a (global) minimizer.

Proof: on board.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Sufficient conditions for existence

Definition

1 *J* is **bounded from below** if $J(\cdot) \ge C$ for some $C \in \mathbb{R}$.

2 *J* is **coercive** if $J(u) \to \infty$ whenever $||u|| \to \infty$.

3 J is lower semi-continuous (lsc) at u^* if

 $J(u^*) \leq \liminf_{u \to u^*} J(u).$

Theorem

Any proper function $J : \mathbb{E} \to \mathbb{R}$, which is bounded from below, coercive, and lsc (everywhere), has a (global) minimizer.

Proof: on board.

Remarks for infinite dimensions

- **1** Weak compactness in reflexive Banach (e.g. Hilbert) sp.
- **2** *J* is convex and strongly $lsc \Rightarrow J$ is weakly lsc.

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Uniqueness

Convex Analysis

Tao Wu Emanuel Laude Zhenzhang Ye

Convex Set Convex Function

Existence of Minimize

• Recall that a function $J:\mathbb{E}\to\overline{\mathbb{R}}$ is strictly convex if

$$J(\alpha u + (1 - \alpha)v) < \alpha J(u) + (1 - \alpha)J(v),$$

for all $u, v \in \text{dom } J, \ u \neq v, \ \alpha \in (0, 1).$

Theorem

The minimizer of a strictly convex function $J : \mathbb{E} \to \overline{\mathbb{R}}$ is unique. Proof: on board.

Last updated: 23.04.2018