Chapter 2 Optimization Algorithms

Convex Optimization for Machine Learning \& Computer Vision SS 2018

Tao Wu
Emanuel Laude
Zhenzhang Ye
Computer Vision Group
Department of Informatics
TU Munich

Gradient-based Methods

Overview of this section

Unconstrained, differentiable, possibly nonconvex optimization
Problem setting:

$$
\text { minimize } J(u) \quad \text { over } u \in \mathbb{E}
$$

Assume:
(1) $J: \mathbb{E} \rightarrow \mathbb{R}$ is continuously differentiable.
(2) There exists a global minimizer u^{*}. (Typically, an optim algorithm seeks for a local minimizer s.t. $\nabla J\left(u^{*}\right)=0$.)

Overview of this section

Unconstrained, differentiable, possibly nonconvex optimization
Problem setting:

$$
\text { minimize } J(u) \quad \text { over } u \in \mathbb{E} .
$$

Assume:
(1) $J: \mathbb{E} \rightarrow \mathbb{R}$ is continuously differentiable.
(2) There exists a global minimizer u^{*}. (Typically, an optim algorithm seeks for a local minimizer s.t. $\nabla J\left(u^{*}\right)=0$.)

Methods under consideration:
(1) (Scaled) gradient descent.
(2) Line search method.
(3) Majorize-minimize method.

Overview of this section

Unconstrained, differentiable, possibly nonconvex optimization
Problem setting:

$$
\text { minimize } J(u) \quad \text { over } u \in \mathbb{E} .
$$

Assume:
(1) $J: \mathbb{E} \rightarrow \mathbb{R}$ is continuously differentiable.
(2) There exists a global minimizer u^{*}. (Typically, an optim algorithm seeks for a local minimizer s.t. $\nabla J\left(u^{*}\right)=0$.)

Methods under consideration:
(1) (Scaled) gradient descent.
(2) Line search method.
(3) Majorize-minimize method.

Analytical questions:
(1) Convergence (or not); global vs. local convergence.
(2) Convergence rate (in special cases).

Descent method

Descent method

Initialize $u^{0} \in \mathbb{E}$. Iterate with $k=0,1,2, \ldots$
(1) If the stopping criteria $\left\|\nabla J\left(u^{k}\right)\right\| \leq \epsilon$ is not satisfied, then continue; otherwise return u^{k} and stop.
(2) Choose a descent direction $d^{k} \in \mathbb{E}$ s.t.

$$
\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle<0 .
$$

(3) Choose an "appropriate" step size $\tau^{k}>0$, and update

$$
u^{k+1}=u^{k}+\tau^{k} d^{k}
$$

Descent direction

Theorem

If $\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle<0$, then $J\left(u^{k}+\tau d^{k}\right)<J\left(u^{k}\right)$ for all sufficiently small $\tau>0$.

Emanuel Laude
Zhenzhang Ye

Descent direction

Theorem

If $\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle<0$, then $J\left(u^{k}+\tau d^{k}\right)<J\left(u^{k}\right)$ for all sufficiently small $\tau>0$.
Proof: Use the Taylor expansion:

$$
\begin{aligned}
& J\left(u^{k}+\tau d^{k}\right)=J\left(u^{k}\right)+\tau\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle+o(\tau) \\
= & J\left(u^{k}\right)+\tau\left(\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle+o(1)\right)<J\left(u^{k}\right) \quad \text { as } \tau \rightarrow 0^{+} .
\end{aligned}
$$

Descent direction

Theorem

If $\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle<0$, then $J\left(u^{k}+\tau d^{k}\right)<J\left(u^{k}\right)$ for all sufficiently small $\tau>0$.
Proof: Use the Taylor expansion:

$$
\begin{aligned}
& J\left(u^{k}+\tau d^{k}\right)=J\left(u^{k}\right)+\tau\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle+o(\tau) \\
= & J\left(u^{k}\right)+\tau\left(\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle+o(1)\right)<J\left(u^{k}\right) \quad \text { as } \tau \rightarrow 0^{+} .
\end{aligned}
$$

Choices of descent direction

(1) Scaled gradient: $d^{k}=-\left(H^{k}\right)^{-1} \nabla J\left(u^{k}\right)$.
(2) Gradient/Steepest descent: $H^{k}=I$.
(3) Newton: $H^{k}=\nabla^{2} J\left(u^{k}\right)$, assuming J is twice continuously differentiable and $\nabla^{2} J\left(u^{k}\right) \succ 0$.
(4) Quasi-Newton: $H^{k} \approx \nabla^{2} J\left(u^{k}\right), H^{k}$ is spd.

Gradient descent with exact line search

- Gradient descent with exact line search:

$$
\begin{aligned}
u^{k+1} & =u^{k}-\tau^{k} \nabla J\left(u^{k}\right) \\
\tau^{k} & =\arg \min _{\tau} J\left(u^{k}-\tau \nabla J\left(u^{k}\right)\right)
\end{aligned}
$$

Gradient descent with exact line search

- Gradient descent with exact line search:

$$
\begin{aligned}
u^{k+1} & =u^{k}-\tau^{k} \nabla J\left(u^{k}\right), \\
\tau^{k} & =\arg \min _{\tau} J\left(u^{k}-\tau \nabla J\left(u^{k}\right)\right) .
\end{aligned}
$$

- Special case: $J(u)=\frac{1}{2}\langle u, Q u\rangle-\langle b, u\rangle$, matrix Q is spd.
$-\nabla J(u)=Q u-b,\|\cdot\|_{Q}^{2} \equiv\langle\cdot, Q \cdot\rangle$.

Gradient descent with exact line search

- Gradient descent with exact line search:

$$
\begin{aligned}
u^{k+1} & =u^{k}-\tau^{k} \nabla J\left(u^{k}\right), \\
\tau^{k} & =\arg \min _{\tau} J\left(u^{k}-\tau \nabla J\left(u^{k}\right)\right) .
\end{aligned}
$$

- Special case: $J(u)=\frac{1}{2}\langle u, Q u\rangle-\langle b, u\rangle$, matrix Q is spd.
$-\nabla J(u)=Q u-b,\|\cdot\|_{Q}^{2} \equiv\langle\cdot, Q \cdot\rangle$.
$-\tau^{k}=\arg \min _{\tau} J\left(u^{k}-\tau \nabla J\left(u^{k}\right)\right)=\frac{\left\|\nabla J\left(u^{k}\right)\right\|^{2}}{\left\|\nabla J\left(u^{k}\right)\right\|_{Q}^{2}} \Rightarrow$

$$
\begin{aligned}
\left\|u^{k+1}-u^{*}\right\|_{Q}^{2} & =\left(1-\frac{\left\|\nabla J\left(u^{k}\right)\right\|^{4}}{\left\|\nabla J\left(u^{k}\right)\right\|_{Q}^{2}\left\|\nabla J\left(u^{k}\right)\right\|_{Q^{-1}}^{2}}\right)\left\|u^{k}-u^{*}\right\|_{Q}^{2} \\
& \leq\left(\frac{\lambda_{\max }(Q)-\lambda_{\min }(Q)}{\lambda_{\max }(Q)+\lambda_{\min }(Q)}\right)^{2}\left\|u^{k}-u^{*}\right\|_{Q}^{2} .
\end{aligned}
$$

Inexact line search

Backtracking line search

- Sufficient decrease condition (let $\left.c_{1} \in(0,1)\right)$:

$$
\begin{equation*}
J\left(u^{k}+\tau d^{k}\right) \leq J\left(u^{k}\right)+c_{1} \tau\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle . \tag{A}
\end{equation*}
$$

- Curvature condition (let $c_{2} \in\left(c_{1}, 1\right)$):

$$
\begin{equation*}
\left\langle\nabla J\left(u^{k}+\tau d^{k}\right), d^{k}\right\rangle \geq c_{2}\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle \tag{C}
\end{equation*}
$$

Inexact line search

Backtracking line search

- Sufficient decrease condition (let $c_{1} \in(0,1)$):

$$
\begin{equation*}
J\left(u^{k}+\tau d^{k}\right) \leq J\left(u^{k}\right)+c_{1} \tau\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle . \tag{A}
\end{equation*}
$$

- Curvature condition (let $c_{2} \in\left(c_{1}, 1\right)$):

$$
\begin{equation*}
\left\langle\nabla J\left(u^{k}+\tau d^{k}\right), d^{k}\right\rangle \geq c_{2}\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle . \tag{C}
\end{equation*}
$$

- $(A) \rightsquigarrow$ Armijo line search; $(A) \&(C) \rightsquigarrow$ Wolfe-Powell I.s.

Armijo I.s.

Wolfe-Powell I.s.

Convergence of backtracking line search

Lemma (feasibility of line search)

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is continuously differentiable, $\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle<0 \forall k$, and $0<c_{1}<c_{2}<1$. Then there exists an open interval in which the step size τ satisfies (A) and (C). Proof: on board.

Convergence of backtracking line search

Lemma (feasibility of line search)

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is continuously differentiable, $\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle<0 \forall k$, and $0<c_{1}<c_{2}<1$. Then there exists an open interval in which the step size τ satisfies (A) and (C). Proof: on board.

Theorem (Zoutendijk)

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is cont'ly differentiable, and (A) and (C) are both satisfied with $0<c_{1}<c_{2}<1$ for each k. In addition, J is μ-Lipschitz differentiable on $\left\{u \in \mathbb{E}: J(u) \leq J\left(u^{0}\right)\right\}$. Then

$$
\sum_{k=0}^{\infty} \frac{\left|\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle\right|^{2}}{\left\|d^{k}\right\|^{2}}<\infty
$$

Proof: on board.
Remark
If $\frac{\left|\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle\right|}{\left\|\nabla J\left(u^{k}\right)\right\|\left\|d^{k}\right\|} \geq$ constant >0, then $\lim _{k \rightarrow \infty}\left\|\nabla J\left(u^{k}\right)\right\|=0$.

Majorize-minimize method

Majorizing function

A function $\widehat{J}(\cdot ; u)$ is a majorant of J at $u \in \mathbb{E}$ if

$$
\left\{\begin{array}{l}
\widehat{J}(u ; u)=J(u), \\
\widehat{J}(\cdot ; u) \geq J(\cdot)
\end{array}\right.
$$

Majorize-minimize method

Majorizing function
A function $\widehat{J}(\cdot ; u)$ is a majorant of J at $u \in \mathbb{E}$ if

$$
\left\{\begin{array}{l}
\widehat{J}(u ; u)=J(u), \\
\widehat{J}(\cdot ; u) \geq J(\cdot) .
\end{array}\right.
$$

Majorize-minimize (MM) algorithm

Let $\widehat{J}(\cdot ; u)$ majorize $J \forall u \in \mathbb{E}$. Then the MM iteration reads:

$$
u^{k+1} \in \arg \min _{u} \widehat{J}\left(u ; u^{k}\right)
$$

Gradient descent as MM

Remark

(1) Monotonic decrease of objectives:

$$
J\left(u^{k+1}\right) \leq \widehat{J}\left(u^{k+1} ; u^{k}\right) \leq \widehat{J}\left(u^{k} ; u^{k}\right)=J\left(u^{k}\right) .
$$

(2) Efficiency of MM relies on the choice of the majorant $\widehat{J}(\cdot ; u)$, i.e., $\widehat{J}(\cdot ; u)$ is easy to minimize.
(3) Common choices of $\widehat{J}(\cdot ; u)$ are quadratics.

Gradient descent as MM

Remark

(1) Monotonic decrease of objectives:

$$
J\left(u^{k+1}\right) \leq \widehat{J}\left(u^{k+1} ; u^{k}\right) \leq \widehat{J}\left(u^{k} ; u^{k}\right)=J\left(u^{k}\right) .
$$

(2) Efficiency of MM relies on the choice of the majorant $\widehat{J}(\cdot ; u)$, i.e., $\widehat{J}(\cdot ; u)$ is easy to minimize.
(3) Common choices of $\widehat{J}(\cdot ; u)$ are quadratics.

Gradient descent as MM

- Observe that $u^{k+1}=u^{k}-\tau \nabla J\left(u^{k}\right)$ iff

$$
u^{k+1}=\arg \min _{u} J\left(u^{k}\right)+\left\langle\nabla J\left(u^{k}\right), u-u^{k}\right\rangle+\frac{1}{2 \tau}\left\|u-u^{k}\right\|^{2}
$$

- When does $J\left(u^{k}\right)+\left\langle\nabla J\left(u^{k}\right), \cdot-u^{k}\right\rangle+\frac{1}{2 \tau}\left\|\cdot-u^{k}\right\|^{2} \geq J(\cdot)$ hold?

Gradient descent as MM

Lemma

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is μ-Lipschitz differentiable. Then $\forall u, v \in \mathbb{E}$:

$$
|J(v)-J(u)-\langle\nabla J(u), v-u\rangle| \leq \frac{\mu}{2}\|v-u\|^{2}
$$

Proof: on board.

Gradient descent as MM

Lemma

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is μ-Lipschitz differentiable. Then $\forall u, v \in \mathbb{E}$:

$$
|J(v)-J(u)-\langle\nabla J(u), v-u\rangle| \leq \frac{\mu}{2}\|v-u\|^{2}
$$

Proof: on board.

Theorem (convergence of gradient descent)

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is μ-Lipschitz differentiable. Then the gradient descent iteration

$$
u^{k+1}=u^{k}-\tau \nabla J\left(u^{k}\right)
$$

with $\tau \in(0,1 / \mu]$ yields $\lim _{k \rightarrow \infty} \nabla J\left(u^{k}\right)=0$.
Proof: on board.

Gradient descent as MM

Lemma

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is μ-Lipschitz differentiable. Then $\forall u, v \in \mathbb{E}$:

$$
|J(v)-J(u)-\langle\nabla J(u), v-u\rangle| \leq \frac{\mu}{2}\|v-u\|^{2}
$$

Proof: on board.
Theorem (convergence of gradient descent)
Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is μ-Lipschitz differentiable. Then the gradient descent iteration

$$
u^{k+1}=u^{k}-\tau \nabla J\left(u^{k}\right)
$$

with $\tau \in(0,1 / \mu]$ yields $\lim _{k \rightarrow \infty} \nabla J\left(u^{k}\right)=0$.
Proof: on board.

Recipe of (global) convergence

By solving the surrogate problem in MM, we achieve: (1) sufficient decrease in the objective; (2) inexact optimality condition matches the exact OC in the limit.

