Proof Script for SS18 Convex Optimization Lecturd**

Last updated: April 23, 2018

1 Convex Analysis

Theorem 1.1 (separation of convex sets). Let C_{1}, C_{2} be nonempty convex subsets in \mathbb{E} such that $C_{1} \cap C_{2}=\emptyset$ and C_{1} is open. Then there exists a hyperplane separating C_{1} and C_{2}, i.e. $\exists v \in$ $\mathbb{E}, v \neq 0, \alpha \in \mathbb{R}$ such that

$$
\left\langle v, u^{1}\right\rangle \geq \alpha \geq\left\langle v, u^{2}\right\rangle, \quad \forall u^{1} \in C_{1}, u^{2} \in C_{2} .
$$

Proof. (i) Claim: Let $C \subset \mathbb{E}$ be closed, convex set, and $w \in \mathbb{E} \backslash C$. Then $\exists v \in \mathbb{E}, v \neq 0, \alpha \in \mathbb{R}$ s.t. $\langle v, w\rangle>\alpha \geq\langle v, u\rangle \forall u \in C$.

Consider the projection of w onto C, i.e. set $u^{*}:=\arg \min _{u \in C} \frac{1}{2}\|u-w\|^{2}$ or, equivalently, let $\left\langle u-u^{*}, u^{*}-w\right\rangle \geq 0 \forall u \in C$.

Now set $v:=w-u^{*} \neq 0$. Then $\forall u \in C$, we have $\langle v, w\rangle=\left\langle w-u^{*}, w\right\rangle=\left\|w-u^{*}\right\|^{2}+$ $\left\langle w-u^{*}, u^{*}\right\rangle \geq\left\|w-u^{*}\right\|^{2}+\left\langle w-u^{*}, u\right\rangle=\|v\|^{2}+\langle v, u\rangle$. Set $\alpha:=\sup \{\langle v, u\rangle: u \in C\}$. Note $\alpha<\infty$ since $\langle v, u\rangle \leq\left\langle v, u^{*}\right\rangle \forall u \in C$. Thus $\langle v, w\rangle>\alpha \geq\langle v, u\rangle \forall u \in C$, which proves the claim.
(ii) Let C_{1} be an open, convex subset of \mathbb{E}, and $C_{2}=\{\bar{w}\}$ with $\bar{w} \in \mathbb{E} \backslash C_{1}$. Since $\mathbb{E} \backslash C_{1}$ is closed, $\exists w^{k} \in \mathbb{E} \backslash \operatorname{cl} C_{1}$ s.t. $w^{k} \rightarrow \bar{w}$. For each w^{k}, by (i), $\exists v^{k} \in \mathbb{E}$ with $\left\|v^{k}\right\| \equiv 1$ s.t. $\left\langle v^{k}, w^{k}\right\rangle \leq$ $\left\langle v^{k}, u^{1}\right\rangle \forall u^{1} \in C_{1} \subset \operatorname{cl} C_{1}$. Hence $v^{k} \rightarrow \bar{v} \in \mathbb{E}$ along a subsequence s.t. $\|\bar{v}\|=1$ and $\langle\bar{v}, \bar{w}\rangle \leq$ $\left\langle\bar{v}, u^{1}\right\rangle \forall u^{1} \in C_{1}$.
(iii) Consider C_{2} as a general convex subset of \mathbb{E}. Set $C:=C_{2}-C_{1}=\left\{u^{2}-u^{1}: u^{1} \in\right.$ $\left.C_{1}, u^{2} \in C_{2}\right\}$. Note that C is a convex, open set, and $0 \notin C$. By (ii), $\exists \bar{v} \in \mathbb{E}$ with $\|\bar{v}\|=1$ s.t. $\left\langle-\bar{v}, u^{2}-u^{1}\right\rangle \geq\langle-\bar{v}, 0\rangle=0$ or, equivalently, $\left\langle\bar{v}, u^{1}\right\rangle \geq\left\langle\bar{v}, u^{2}\right\rangle \forall u^{1} \in C_{1}, u^{2} \in C_{2}$. Set $\alpha:=\sup \left\{\left\langle\bar{v}, u^{2}\right\rangle: u^{2} \in C_{2}\right\}$, then we conclude that $\left\langle\bar{v}, u^{1}\right\rangle \geq \alpha \geq\left\langle\bar{v}, u^{2}\right\rangle \forall u^{1} \in C_{1}, u^{2} \in C_{2}$.

Theorem 1.2. A proper convex function $J: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ is locally Lipschitz at any $u \in \operatorname{rint} \operatorname{dom} J$.
Proof. Throughout the proof, we consider $J: \operatorname{aff} \operatorname{dom} J \rightarrow \overline{\mathbb{R}}$.
(i) Claim: If $M=\sup \left\{J(v): v \in B_{\epsilon}(u)\right\}<\infty$ with $\epsilon>0$, then J is locally Lipschitz at u.

First, by convexity of J we have $\forall v \in B_{\epsilon}(u): J(v) \geq 2 J(u)-J(2 u-v) \geq 2 J(u)-M$. Thus, $\sup \left\{|J(v)|: v \in B_{\epsilon}(u)\right\} \leq M+2|J(u)|$.

Next, we show J is Lipschitz on $B_{\epsilon / 2}(u)$. Let $v, w \in B_{\epsilon / 2}(u)$ be given. Take $z \in B_{\epsilon}(u)$ s.t. $w=(1-t) v+t z$ for some $t \in[0,1]$ and $\|z-v\| \geq \epsilon / 2$. By convexity, $J(w)-J(v) \leq$ $t(J(z)-J(v)) \leq 2 t(M-J(u))$. Since $t(z-v)=w-v$, we have $t=\|w-v\| /\|z-v\| \leq 2\|w-v\| / \epsilon$ and $J(w)-J(v) \leq(4(M-J(u)) / \epsilon)\|w-v\|$. Analogously, one can show $J(v)-J(w) \leq$ $(4(M-J(u)) / \epsilon)\|w-v\|$. Hence, J is Lipschitz on $B_{\epsilon / 2}(u)$ with modulus $4(M-J(u)) / \epsilon$.

[^0](ii) Let $u \in \operatorname{rint} \operatorname{dom} J$ and $n=\operatorname{dim}(\operatorname{aff} \operatorname{dom} J)$. Then by Carathéodory's theorem, $\exists\left\{\alpha^{i}\right\}_{i=1}^{n+1} \subset$ $(0,1),\left\{u^{i}\right\}_{i=1}^{n+1} \subset \operatorname{dom} J$ s.t. $u=\sum_{i=1}^{n+1} \alpha^{i} u^{i}, \quad \sum_{i=1}^{n+1} \alpha^{i}=1$, i.e. u belongs to the interior of the convex hull of $\left\{u^{i}\right\}_{i=1}^{n+1}$. Thus one can apply (i) to assert that J is locally Lipschitz at u.

Theorem 1.3. For any proper convex function $J: \mathbb{E} \rightarrow \overline{\mathbb{R}}$, if $u^{*} \in \operatorname{dom} J$ is a local minimizer of J, then it is also a global minimizer.

Proof. By the definition of a local minimizer, $\exists \epsilon>0$ s.t. $J\left(u^{*}\right) \leq J(u) \forall u \in B_{\epsilon}\left(u^{*}\right)$. For the sake of contradiction, assume $\exists \bar{u} \in \mathbb{E}$ s.t. $J(\bar{u})<J\left(u^{*}\right)$. By convexity of J, we have $J\left(\alpha \bar{u}+(1-\alpha) u^{*}\right) \leq J\left(u^{*}\right)-\alpha\left(J\left(u^{*}\right)-J(\bar{u})\right)<J\left(u^{*}\right) \forall \alpha \in(0,1]$. This violates the local optimality of u^{*} as $\alpha \rightarrow 0^{+}$.

Theorem 1.4. Any proper function $J: \mathbb{E} \rightarrow \overline{\mathbb{R}}$, which is bounded from below, coercive, and lsc, has a (global) minimizer.

Proof. Let $\left\{u^{k}\right\}$ be an infimizing sequence for J, i.e. $\lim _{k \rightarrow \infty} J\left(u^{k}\right)=\inf _{u \in \mathbb{E}} J(u)>-\infty$. Since $\left\{J\left(u^{k}\right)\right\}$ is uniformly bounded from above, by coercivity of $J,\left\{u^{k}\right\}$ is uniformly bounded. By compactness, $u^{k} \rightarrow u^{*}$ along a subsequence. Since J is lsc, we have $J\left(u^{*}\right) \leq \liminf _{k \rightarrow \infty} J\left(u^{k}\right)=$ $\inf _{u \in \mathbb{E}} J(u)$, which implies $J\left(u^{*}\right)=\inf _{u \in \mathbb{E}} J(u)$ or u^{*} is a minimizer of J.

Theorem 1.5. The minimizer of a strictly convex function $J: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ is unique.
Proof. Let $u, v \in \mathbb{E}$ be two (global) minimizers s.t. $u \neq v$ and $J(u)=J(v)=J^{*}$. By strict convexity of $J, J(\alpha u+(1-\alpha) v)<\alpha J(u)+(1-\alpha) J(v)=J^{*}$ for all $\alpha \in(0,1)$, which contradicts the global optimality of u and v.

[^0]: *Please report typos to: tao.wu@tum.de

