Proof Script for SS18 Convex Optimization Lecture*

Last updated: April 30, 2018

1 Convex Analysis

Theorem 1.1 (separation of convex sets). Let C_1 , C_2 be nonempty convex subsets in \mathbb{E} such that $C_1 \cap C_2 = \emptyset$ and C_1 is open. Then there exists a hyperplane separating C_1 and C_2 , i.e. $\exists v \in \mathbb{E}$, $v \neq 0$, $\alpha \in \mathbb{R}$ such that

$$\langle v, u^1 \rangle \ge \alpha \ge \langle v, u^2 \rangle, \quad \forall u^1 \in C_1, \ u^2 \in C_2.$$

Proof. (i) Claim: Let $C \subset \mathbb{E}$ be closed, convex set, and $w \in \mathbb{E} \setminus C$. Then $\exists v \in \mathbb{E}, \ v \neq 0, \ \alpha \in \mathbb{R}$ s.t. $\langle v, w \rangle > \alpha \geq \langle v, u \rangle \ \forall u \in C$.

Consider the projection of w onto C, i.e. set $u^* := \arg\min_{u \in C} \frac{1}{2} ||u - w||^2$ or, equivalently, let $\langle u - u^*, u^* - w \rangle \ge 0 \ \forall u \in C$.

Now set $v := w - u^* \neq 0$. Then $\forall u \in C$, we have $\langle v, w \rangle = \langle w - u^*, w \rangle = \|w - u^*\|^2 + \langle w - u^*, u^* \rangle \geq \|w - u^*\|^2 + \langle w - u^*, u \rangle = \|v\|^2 + \langle v, u \rangle$. Set $\alpha := \sup\{\langle v, u \rangle : u \in C\}$. Note $\alpha < \infty$ since $\langle v, u \rangle \leq \langle v, u^* \rangle$ $\forall u \in C$. Thus $\langle v, w \rangle > \alpha \geq \langle v, u \rangle$ $\forall u \in C$, which proves the claim.

- (ii) Let C_1 be an open, convex subset of \mathbb{E} , and $C_2 = \{\bar{w}\}$ with $\bar{w} \in \mathbb{E} \setminus C_1$. Since $\mathbb{E} \setminus C_1$ is closed, $\exists w^k \in \mathbb{E} \setminus \operatorname{cl} C_1$ s.t. $w^k \to \bar{w}$. For each w^k , by (i), $\exists v^k \in \mathbb{E}$ with $||v^k|| \equiv 1$ s.t. $\langle v^k, w^k \rangle \leq \langle v^k, u^1 \rangle \ \forall u^1 \in C_1 \subset \operatorname{cl} C_1$. Hence $v^k \to \bar{v} \in \mathbb{E}$ along a subsequence s.t. $||\bar{v}|| = 1$ and $\langle \bar{v}, \bar{w} \rangle \leq \langle \bar{v}, u^1 \rangle \ \forall u^1 \in C_1$.
- (iii) Consider C_2 as a general convex subset of \mathbb{E} . Set $C:=C_2-C_1=\{u^2-u^1:u^1\in C_1,\ u^2\in C_2\}$. Note that C is a convex, open set, and $0\notin C$. By (ii), $\exists \bar{v}\in \mathbb{E}$ with $\|\bar{v}\|=1$ s.t. $\langle -\bar{v},u^2-u^1\rangle\geq \langle -\bar{v},0\rangle=0$ or, equivalently, $\langle \bar{v},u^1\rangle\geq \langle \bar{v},u^2\rangle$ $\forall u^1\in C_1,\ u^2\in C_2$. Set $\alpha:=\sup\{\langle \bar{v},u^2\rangle:u^2\in C_2\}$, then we conclude that $\langle \bar{v},u^1\rangle\geq \alpha\geq \langle \bar{v},u^2\rangle$ $\forall u^1\in C_1,\ u^2\in C_2$. \square

Theorem 1.2. A proper convex function $J : \mathbb{E} \to \overline{\mathbb{R}}$ is locally Lipschitz at any $u \in \text{rint dom } J$.

Proof. Throughout the proof, we consider J: aff dom $J \to \overline{\mathbb{R}}$.

(i) Claim: If $M = \sup\{J(v) : v \in B_{\epsilon}(u)\} < \infty$ with $\epsilon > 0$, then J is locally Lipschitz at u. First, by convexity of J we have $\forall v \in B_{\epsilon}(u) : J(v) \ge 2J(u) - J(2u - v) \ge 2J(u) - M$. Thus,

 $\sup\{|J(v)| : v \in B_{\epsilon}(u)\} \le M + 2|J(u)|.$

Next, we show J is Lipschitz on $B_{\epsilon/2}(u)$. Let $v,w\in B_{\epsilon/2}(u)$ be given. Take $z\in B_{\epsilon}(u)$ s.t. w=(1-t)v+tz for some $t\in [0,1]$ and $\|z-v\|\geq \epsilon/2$. By convexity, $J(w)-J(v)\leq t(J(z)-J(v))\leq 2t(M-J(u))$. Since t(z-v)=w-v, we have $t=\|w-v\|/\|z-v\|\leq 2\|w-v\|/\epsilon$ and $J(w)-J(v)\leq (4(M-J(u))/\epsilon)\|w-v\|$. Analogously, one can show $J(v)-J(w)\leq (4(M-J(u))/\epsilon)\|w-v\|$. Hence, J is Lipschitz on $B_{\epsilon/2}(u)$ with modulus $4(M-J(u))/\epsilon$.

^{*}Please report typos to: tao.wu@tum.de

(ii) Let $u \in \operatorname{rint} \operatorname{dom} J$ and $n = \operatorname{dim}(\operatorname{aff} \operatorname{dom} J)$. Then by Carathéodory's theorem, $\exists \{\alpha^i\}_{i=1}^{n+1} \subset (0,1), \ \{u^i\}_{i=1}^{n+1} \subset \operatorname{dom} J$ s.t. $u = \sum_{i=1}^{n+1} \alpha^i u^i, \ \sum_{i=1}^{n+1} \alpha^i = 1$, i.e. u belongs to the interior of the convex hull of $\{u^i\}_{i=1}^{n+1}$. Thus one can apply (i) to assert that J is locally Lipschitz at u.

Theorem 1.3. For any proper convex function $J : \mathbb{E} \to \overline{\mathbb{R}}$, if $u^* \in \text{dom } J$ is a local minimizer of J, then it is also a global minimizer.

Proof. By the definition of a local minimizer, $\exists \epsilon > 0$ s.t. $J(u^*) \leq J(u) \ \forall u \in B_{\epsilon}(u^*)$. For the sake of contradiction, assume $\exists \bar{u} \in \mathbb{E}$ s.t. $J(\bar{u}) < J(u^*)$. By convexity of J, we have $J(\alpha \bar{u} + (1 - \alpha)u^*) \leq J(u^*) - \alpha(J(u^*) - J(\bar{u})) < J(u^*) \ \forall \alpha \in (0, 1]$. This violates the local optimality of u^* as $\alpha \to 0^+$.

Theorem 1.4. Any proper function $J : \mathbb{E} \to \overline{\mathbb{R}}$, which is bounded from below, coercive, and lsc, has a (global) minimizer.

Proof. Let $\{u^k\}$ be an infimizing sequence for J, i.e. $\lim_{k\to\infty} J(u^k) = \inf_{u\in\mathbb{E}} J(u) > -\infty$. Since $\{J(u^k)\}$ is uniformly bounded from above, by coercivity of J, $\{u^k\}$ is uniformly bounded. By compactness, $u^k \to u^*$ along a subsequence. Since J is lsc, we have $J(u^*) \leq \liminf_{k\to\infty} J(u^k) = \inf_{u\in\mathbb{E}} J(u)$, which implies $J(u^*) = \inf_{u\in\mathbb{E}} J(u)$ or u^* is a minimizer of J.

Theorem 1.5. The minimizer of a strictly convex function $J: \mathbb{E} \to \overline{\mathbb{R}}$ is unique.

Proof. Let $u, v \in \mathbb{E}$ be two (global) minimizers s.t. $u \neq v$ and $J(u) = J(v) = J^*$. By strict convexity of J, $J(\alpha u + (1 - \alpha)v) < \alpha J(u) + (1 - \alpha)J(v) = J^*$ for all $\alpha \in (0, 1)$, which contradicts the global optimality of u and v.

Theorem 1.6. Let $J: \mathbb{E} \to \overline{\mathbb{R}}$ be a convex function. Then ∂J is a monotone operator, i.e. $\forall u^1, u^2 \in \text{dom } J, \ p^1 \in \partial J(u^1), \ p^2 \in \partial J(u^2)$:

$$\langle p^1 - p^2, u^1 - u^2 \rangle \ge 0.$$

Proof. By applying the definition of subdifferential at arbitrarily given $u^1, u^2 \in \text{dom } J$, we have

$$J(u^2) \ge J(u^1) + \langle p^1, u^2 - u^1 \rangle,$$

 $J(u^1) \ge J(u^2) + \langle p^2, u^1 - u^2 \rangle.$

Adding the two inequalities yields $\langle p^1 - p^2, u^1 - u^2 \rangle \ge 0$.

Theorem 1.7. Let $J: \mathbb{E} \to \overline{\mathbb{R}}$ be a convex function. Then for any $u \in \operatorname{int} \operatorname{dom} J$, $\partial J(u)$ is a nonempty, compact, and convex subset.

Proof. (i) nonemptiness. Since $(u, J(u)) \notin \text{int epi } J$, by Theorem 1.1 we have $\exists (p, -\alpha) \in \mathbb{E} \times \mathbb{R}$ s.t. $(p, -\alpha) \neq (0, 0)$, $\alpha \geq 0$ by our choice, and $\langle (p, -\alpha), (u - v, J(u) - J(v)) \rangle \geq 0 \ \forall v \in \text{dom } J$. In fact, we must have $\alpha > 0$ since otherwise p = 0. Thus, we conclude that $p/\alpha \in \partial J(u)$.

- (ii) boundedness. By Theorem 1.2, J is locally Lipschitz at u with modulus L_u . Let $p \in \partial J(u)$ be fixed. For any $h \in (\text{dom } J) u$ whenever ||h|| is sufficiently small, we have $\langle p, h \rangle \leq J(u + h) J(u) \leq L_u ||h||$. This holds true only if $||p|| \leq L_u$, which implies boundedness of $\partial J(u)$.
- (iii) closedness. Let $v \in \mathbb{E}$ be arbitrarily fixed and $p^k \to p^*$ where each $p^k \in \partial J(u)$. Then $\forall k : J(v) J(u) \ge \langle p^k, v u \rangle$. By continuity, $J(v) J(u) \ge \langle p^*, v u \rangle$ when passing $k \to \infty$. Since v can be arbitrary, we assert $p^* \in \partial J(u)$.

(iv) convexity. Let $v \in \mathbb{E}$ be arbitrarily fixed, and $p, q \in \partial J(u)$. Then we have

$$J(v) \ge J(u) + \langle p, v - u \rangle,$$

$$J(v) \ge J(u) + \langle q, v - u \rangle.$$

Hence,
$$\forall 0 \leq \alpha \leq 1 : J(v) \geq J(u) + \langle \alpha p + (1 - \alpha)q, v - u \rangle$$
, i.e. $\alpha p + (1 - \alpha)q \in \partial J(u)$.

Theorem 1.8. Let $J: \mathbb{E} \to \overline{\mathbb{R}}$ be a proper, convex, lsc function. Then ∂J is a closed set-valued map, i.e. $p^* \in \partial J(u^*)$ whenever

$$\exists (u^k, p^k) \to (u^*, p^*) \in (\text{dom } J) \times \mathbb{E} \quad \text{s.t. } p^k \in \partial J(u^k) \ \forall k.$$

Proof. Let $v \in \mathbb{E}$ be arbitrarily fixed. For each $k, p^k \in \partial J(u^k) \Rightarrow J(v) \geq J(u^k) + \langle p^k, v - u^k \rangle$. Passing $k \to \infty$, we have $\langle p^k, v - u^k \rangle \to \langle p^*, v - u^* \rangle$ and $J(u^*) \leq \liminf_{k \to \infty} J(u^k)$. Hence, $J(u^*) + \langle p^*, v - u^* \rangle \leq \liminf_{k \to \infty} \{J(u^k) + \langle p^k, v - u^k \rangle\} \leq J(v)$. Since v can be arbitrary, $p^* \in \partial J(u^*)$.

Theorem 1.9. Given any proper convex function $J: \mathbb{E} \to \overline{\mathbb{R}}$, the sufficient and necessary condition for u^* being a (global) minimizer for J is: $0 \in \partial J(u^*)$.

Proof. (i) sufficiency.
$$0 \in \partial J(u^*) \Rightarrow J(u) \geq J(u^*) + \langle 0, u - u^* \rangle = J(u^*) \ \forall u \in \mathbb{E}$$
. (ii) necessity. $J(u^*) \leq J(u) \ \forall u \in \mathbb{E} \Rightarrow J(u^*) + \langle 0, u - u^* \rangle \leq J(u) \ \forall u \Rightarrow 0 \in \partial J(u^*)$.