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1 Convex Analysis

Theorem 1.1 (separation of convex sets). Let C1, Cy be nonempty convexr subsets in E such
that C1yNCy = (0 and C is open. Then there exists a hyperplane separating C1 and Cs, i.e. v €
E, v#0, a € R such that

<v,u1> >a> <v,u2>, vul € C1, u? € C.

Proof. (i) Claim: Let C' C E be closed, convex set, and w € E\C. Then Jv € E, v #0, a € R
s.t. (v,w) >a > (v,u) YueC.

Consider the projection of w onto C, i.e. set u* := arg min,cc %Hu — w||? or, equivalently,
let (u—u*,u* —w) >0VueC.

Now set v := w — u* # 0. Then Yu € C, we have (v,w) = (w—u*,w) = |[w — u*||® +
(w—u*u*) > |lw—u*]]? + (w—u*u) = |[|v||* + (v,u). Set a := sup{{v,u) : u € C}. Note
a < oo since (v,u) < (v,u*) Yu € C. Thus (v,w) > a > (v,u) Yu € C, which proves the claim.

(ii) Let C} be an open, convex subset of E, and Cy = {w} with w € E\C;. Since E\C] is
closed, 3w* € E\ c1Cy s.t. w* — w. For each w”, by (i), Jv* € E with [[v*[| = 1 s.t. (vF, wh) <
(v*,u')y Vul € C1 C c1Cy. Hence v* — ¥ € E along a subsequence s.t. [|0]| = 1 and (v, @) <
(v,u') Vu' € Cy.

(iii) Consider Cy as a general convex subset of E. Set C := Cy — C; = {u? —u! : u! €
C1, u? € Cy}. Note that C is a convex, open set, and 0 ¢ C. By (ii), 30 € E with ||9]| = 1
s.t. <—6,u2—u1> > (—v,0) = 0 or, equivalently, <z7,u1> > <6,u2> vul € Cy, u? € Cy. Set
o= sup{<17,u2> : u? € Cy}, then we conclude that <T},u1> >a> <T},u2> Vul € Cp, u? € Cy. O

Theorem 1.2. A proper convex function J : E — R is locally Lipschitz at any u € rint dom J.

Proof. Throughout the proof, we consider J : aff dom J — R.

(i) Claim: If M = sup{J(v) : v € Be(u)} < oo with € > 0, then J is locally Lipschitz at w.

First, by convexity of J we have Yv € B(u) : J(v) > 2J(u) — J(2u—wv) > 2J(u) — M. Thus,
sup{|J(v)| : v € Be(u)} < M + 2|J(u)].

Next, we show J is Lipschitz on By(u). Let v,w € B.js(u) be given. Take z € Bc(u)
st. w = (1 —t)v + tz for some t € [0,1] and ||z — v|| > €/2. By convexity, J(w) — J(v) <
t(J(z)—J(v)) < 2t(M—J(u)). Since t(z—v) = w—v, we have t = |[w—v||/||z—v| < 2||lw—wv]| /e
and J(w) — J(v) < (4(M — J(u))/e)||lw — v||. Analogously, one can show J(v) — J(w) <
(4(M — J(u))/€)||lw —v|. Hence, J is Lipschitz on B, y(u) with modulus 4(M — J(u))/e.
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(ii) Let u € rint dom J and n = dim(aff dom J). Then by Carathéodory’s theorem, Haiyt!
(0,1), {u'}*} € dom J s.t. uw = Y0 adul, S al = 1, ie. u belongs to the interior of the

convex hull of {u'}7*!. Thus one can apply (i) to assert that J is locally Lipschitz at u. O

Theorem 1.3. For any proper convex function J : E — R, if u* € dom.J is a local minimizer
of J, then it is also a global minimizer.

Proof. By the definition of a local minimizer, 3¢ > 0 s.t. J(u*) < J(u) Yu € Bc(u*). For
the sake of contradiction, assume Ju € E s.t. J(u) < J(u*). By convexity of J, we have
J(au + (1 — a)u*) < Jw*) —a(J(u*) — J(u)) < J(u*) Ya € (0,1]. This violates the local
optimality of u* as o — 0. O

Theorem 1.4. Any proper function J : E — R, which is bounded from below, coercive, and Isc,
has a (global) minimizer.

Proof. Let {u*} be an infimizing sequence for J, i.e. limy_,o, J(u¥) = inf,ecg J(u) > —oo. Since
{J(u*)} is uniformly bounded from above, by coercivity of J, {u*} is uniformly bounded. By
compactness, u* — u* along a subsequence. Since J is lsc, we have J(u*) < liminfy_, J(uF) =
infyeg J(u), which implies J(u*) = inf,ecg J(u) or v* is a minimizer of J. O

Theorem 1.5. The minimizer of a strictly convex function J : E — R is unique.

Proof. Let u,v € E be two (global) minimizers s.t. v # v and J(u) = J(v) = J*. By strict
convexity of J, J(au+ (1—a)v) < aJ(u)+ (1 —a)J(v) = J* for all @ € (0,1), which contradicts
the global optimality of v and v. O

Theorem 1.6. Let J : E — R be a conver function. Then 0.J is a monotone operator, i.e.
vul u? € dom J, pt € J(ut), p* € 0J(u?) :

<p1 2l — u2> > 0.

Proof. By applying the definition of subdifferential at arbitrarily given u',u? € dom J, we have

J(u?) = J(u') + (p',u? —ul),
Jub) > J(u?) + <p2,u1 — u2> )
Adding the two inequalities yields <p1 —p?ul — u2> > 0. O

Theorem 1.7. Let J : E — R be a convex function. Then for any u € intdom J, 0J(u) is a
nonempty, compact, and convex subset.

Proof. (i) nonemptiness. Since (u,J(u)) ¢ intepiJ, by Theorem we have 3(p, —a) € E x
R s.t. (p,—a) # (0,0), @ > 0 by our choice, and ((p, —«), (u — v, J(u) — J(v))) > 0 Vv € dom J.
In fact, we must have « > 0 since otherwise p = 0. Thus, we conclude that p/a € 9J(u).

(ii) boundedness. By Theorem|[L.2] J is locally Lipschitz at u with modulus L,. Let p € 9J (u)
be fixed. For any h € (domJ) — u whenever ||k is sufficiently small, we have (p,h) < J(u +
h) — J(u) < Ly||h||. This holds true only if ||p|| < Ly, which implies boundedness of 9.J(u).

(iii) closedness. Let v € E be arbitrarily fixed and p¥ — p* where each p* € 9.J(u). Then
Vk : J(v) — J(u) > (p¥,v — u). By continuity, J(v) — J(u) > (p*,v — u) when passing k — occ.
Since v can be arbitrary, we assert p* € 9.J(u).



(iv) convexity. Let v € E be arbitrarily fixed, and p,q € 0J(u). Then we have

J(v) = J(u) + (p,v —u),
J(v) > J(u) + (g,v —u).

Hence, VO < a <1:J(v) > J(u) + (ap+ (1 — a)g,v —u), i.e. ap+ (1 — a)q € dJ (). O

Theorem 1.8. Let J : E — R be a proper, convez, Isc function. Then 0J is a closed set-valued
map, i.e. p* € 0J(u*) whenever

Ik, p*) — (u*,p*) € (dom J) x E s.t. p* € 8J(uF) VE.

Proof. Let v € E be arbitrarily fixed. For each k, p* € 0J(uF) = J(v) > J(uF) + (p*,v — uF).
Passing £ — oo, we have <pk7v —uk> — (p*,v —u*) and J(u*) < liminfy_,o J(uF). Hence,
J(u*) + (p*, v —u*) < liminfy,oo{J(u”) + (p¥,v — ")} < J(v). Since v can be arbitrary,
p* € aJ(u"). O

Theorem 1.9. Given any proper convex function J : E — R, the sufficient and necessary
condition for u* being a (global) minimizer for J is: 0 € 9J(u*).

Proof. (i) sufficiency. 0 € 0J(u*) = J(u) > J(u*) + (0,u — u*) = J(u*) Vu € E.
(ii) necessity. J(u*) < J(u) Vu e E = J(u*)+ (0,u —u*) < J(u) Yu = 0€dJ(u*). O

Theorem 1.10 (Fenchel-Young inequality). For any J : E — R and (u,p) € E x E, we have
J(u) + J*(p) = (u,p).
The equality holds iff p € 0J(u) for (u,p) € dom J x dom J*.

Proof. (1) J(u) + J*(p) > (u,p) follows directly from the definition of convex conjugate. (ii)
The equality holds only if (u,p) € dom J x dom J*. Moreover, p € dJ(u) is the sufficient and
necessary condition for min,eg{J(u) — (u,p)}. O

Theorem 1.11 (order reversing). For any Ji,Jo : E — R, we have Jj < Ji whenever J; > Jo.

Proof. Given any (u,p), we have (u,p) — Ji(u) < (u,p) — Jo(u). Taking supremum over u on
both sides yields J;(p) < J3(p). O

Theorem 1.12. Let J : E — R, and J** = (J*)* be the biconjugate of J. In general:
1. J%() < J().
2. J* is convex and lsc.
If J is proper, convex, and lsc, then:
3. () =J().
4. p€dJ(u) iff u e dJ*(p).



Proof. (1) Since J**(u) = sup,{{(p,u) — J*(p)} and, by Theorem [1.10} (p,u) — J*(p) < J(u) Vp,
we assert J**(-) < J(+).

(2) (i) convexity. Let p,g € E, 0 < a < 1. Then J*(ap+(1—a)q) = sup,{(u,ap + (1 — a)q)—
J(u)} < sup,{{au,p) —aJ(u)} + sup, {{(1 — )u,q) — (1 —a)J(u)} = aJ*(p) + (1 — a)J*(q).

(ii) Isc. Note epiJ* = {(p,a) € E x R : (u,p) — J(u) < a Yu} = N, epi ®,, where ®,(-) =
(u,-) — J(u). Since each epi ®, and any arbitrary intersection of closed sets is closed, epi J* is
closed and hence J* is Isc.

(3) For the sake of contradiction, assume 3u € dom J** s.t. J(a) > J**(u). Let d € (0, J(u)—
J**(u)) be fixed. Since (@, J(u) — d) ¢ epiJ and epiJ is convex and closed, by Theorem
d(p,—1) € E xR s.t. ((p,—1),(w,J(a)—d)) > ((p,—1), (u,)) V(u,a) € epiJ. In particular,
(p,uy —J(u) +d > (p,u) — J(u) Yu € dom J. Hence, (p,u) —J(a)+d > J*(p) > (p,a) — J**(u)
by Theorem Thus we have J**(u) + d > J(u) as a contradiction to our assumption.

(4)pedJ(u) & J(u)+J*(p) = (u,p) & J"(w)+J"(p)=(uw,p & uwedJ(p). O

Theorem 1.13. Assume that J : E — R is proper, convex, and Isc. Then J is pi-strongly convex
iff J* is i—Lipschitz differentiable.

Proof. (only if) Let p € 0J(u) be arbitrarily given. By u-strong convexity of J, we have
J(0) 2 J () + (p.v—u)+ Zllo —uf® Vo (1)

Then Vg : J*(q) = sup,{{q,v) — J(v)} < sup,{{q,v) — J(u) = ({p,v —u) = §llv—ul*} = (g, ) -
J(u)+sup,{{g — p,v —u) = §llo—ull?} = (g, u) — T (u) + 5 la—pl* = (p,w) = J (u) + (g — p, u) +
i”q—pH2 = J*(p)+(q —p, u)+i”q—pH2. Here we have used the identity (p,u)—J(u) = J*(p).
We have actually derived lim,_,, [|J*(q) — J*(p) — (¢ — p,w) ||/|l¢ — pl| = 0, which asserts that
J* is (Frechét-)differentiable at p with V.J*(p) = w.

Finally we show V.J* is +-Lipschitz. Let u = V.J*(p), v = V.J*(q), or equivalently p €
dJ(u), g € dJ(v). Then by (1) we have

J(©) 2 () + (p,v =)+ Fllo —ul

J(u) > J() + (g,u—v) + %Hu—vHQ.

Adding the above two inequalities, we obtain pllu — v||? < (p — ¢,u —v) < ||p — ql|||u — v|| and
thus [lu — o]l < {lp —q]-

(if) Note that J*(q) = J*(p) + [y (VJ*(p+ s(g —p)),q — p) ds = J*(p) + (VJ*(p),q — p) +
Jo (VT +s(q—p)) = VI*(p).q —p)ds < J*(p) + (VJ*(p).q — ) + allg — pll> Let p €
0J(u) & u=VJ*(p). Then J*(q) < J*(p)+ (¢ — p,u) + ﬁ||q—p||2. Taking the convex conju-
gate on both sides, we deduce J(v) = J**(v) > sup,{(q,v) — [J*(p) + (¢ — p,u) + i”q -|?} =
% (p) + {pyv) + £llo — wl? = J(w) + (0 — u) + Ellw — ull®. n
Theorem 1.14 (weak duality). Let K € R™*" and F : R™ — R, G : R® — R are proper,
convez, and lsc. Then it holds that inf,{F(Ku) + G(u)} > supp{—G*(—KTp) — F*(p)}.

Proof. Let L(u,p) = (p, Ku) — F*(p) + G(u), then inf, {F(Ku) + G(u)} = inf, sup, L(u,p)
and sup,{—G*(—K"p) — F*(p)} = sup,inf, L(u,p). It remains to verify inf, sup, L(u,p) >
sup, inf, L(u, p). For an arbitrarily fixed (u,p), we have sup, L(u,p’) > L(u,p) > inf, L(u', p).
Hence, the conclusion follows. O



Theorem 1.15 (Fenchel-Rockafellar duality). Assume Ju € dom G s.t. F' is continuous at Ku.
Then the strong duality holds: P* = D*. Moreover, (u*,p*) is the optimal solution pair iff

Ku* € 0F*(p*),
~KTp* € 0G(u*).

Proof. Define ®(v) := inf, {F(Ku + v) + G(u)}. Since Vo',v? € R™, «a € [0,1] : a®(v!) +
(1—a)®(v?) = inf 1 {aF(Ku' +v') + aG(u)} +inf 2 {(1 — @) F(Ku? + v?) + (1 — a)G(u?)} =
inf,1 2 {aF (Ku! + ') + (1 — a)F(Ku® 4+ v?) + aG(u') + (1 — a)G(v?)} > inf{F(Ku + o’ +
(1—a)v?) +G(u) : u = aul + (1 — a)u?} > ®(av! + (1 — a)v?), we prove that ® is a convex
function.

Without loss of generality, assume ®(0) > —oo. By our assumption, Je > 0 s.t. V||v|| < €:
®(v) < F(Ku+v)+ G(u) < M for some M < co. Hence, v € [ ®. By Theorem ® is locally
Lipschitz at 0, and ®(0) = ®**(0) = sup, —®*(p), where ®*(p) = sup,{(p,v) — inf, {F(Ku +
v) + G(u)}} = sup, , {(p,v + Ku) + (K "p,u) — F(Ku+v) — G(u)} = F*(p) + G*(—K "p).
Thus, P* = D* is proven.

As for the optimality condition, note that ¥(u,p) : G(u,p) = F(Ku) + G(u) + G*(—K "p) +
F*(p) = F(Ku) + F*(p) — (Ku,p) + G(u) + G*(—K "p) — (—~K "p,u) > 0. The equality holds,
ie. G(u*,p*) =0, iff Ku* € OF*(p*) and —K "p* € G (u*) according to Theoremm O

Theorem 1.16 (Moreau identity). Let 7 > 0 and J : E — R be proper, convex, and lsc. Then
the following identity holds:

id() = prox, ;(-) + 7 proxs ;. (/7).

Proof. v = Tprox1 ;. (u/T) < (I+ %&]*)_1 (u/T) > v/T & OJ*(v/T)Su—v & VT E
dJ(u—v) & u—v=(I+79J)" (u) = prox,;(u). O
Theorem 1.17. Let F,G : E — R be proper, convex, and Isc. Then

(FOG)* = F* + G™.

Proof. ¥p € E : (FUG)*(p) = sup,,, {(p,u) —F(v)—G(u—v)} = sup, ,{{p, v) = F(v)+(p,u — v)—
G(u—v)} = F*(p) +G*(p). O



2 Optimization Algorithms

Theorem 2.1. If (VJ(u*),d") <0, then J(u" + 7d*) < J(u*) for all sufficiently small T > 0.

Proof. The conclusion follows directly from the Taylor expansion: J(u* + 7d*) = J(u*) +
T(VJI(WF),d*) + o(r) = J(uF) + 7 ((VJI(uF),d") + 0o(1)) < J(uF), for all 7 > 0 sufficiently
small. O

Lemma 2.2 (feasibility of line search). Assume that J : E — R is continuously differentiable,
<VJ(uk), dk> < O0VEk, and 0 < c; < ca < 1. Then there exists an open interval in which the step
size T satisfies the Armijo- and the curvature conditions.

Proof Consider o(1) == J(uF + 7d*) and (1) = J(u*) + 7¢1 (VJI(uF),d¥) for 7 > 0. Since
¢'(0) = (VJ(u),dF) < ¢'(0), ¢(1) < ¥(7) for all 7 > 0 sufficiently close to 0. On the other
hand o(-) is bounded from below but ¢(-) is not. Hence, ¢ and v intersect at 7 = 7/ > 0 (for
the first time as 7 increases from 0). Thus, 0 < 7 < 7/ fulfills the Armijo condition.

By the mean Value theorem, 37" € (0,7') s.t. J(u +7'd") — J(uF) = 7/ (VI (uF + 7dF), d¥) .
This 1mphes <VJ uk 4 7" db), dk> = ¢ <VJ dk> > e <VJ(uk),dk> since ¢; < cg and
(VJ(u),d*) < 0. By continuity, this inequality holds in a neighborhood of 7”. O

Theorem 2.3 (Zoutendijk). Assume that J : E — R is continuously differentiable, and the

Armijo- and curvature-conditions are both satisfied with 0 < ¢1 < ca < 1 for each k. In addition,

. . . . . 0 00 ’<Vj(uk)vdk>’2
J is p-Lipschitz differentiable on {u € E: J(u) < J(u”)}. Then ) ;- S < oo

Proof. From the curvature condition, we have <VJ( R — VI (W), d*) > (co—1) (VI (u), d¥).
Since V.J is p-Lipschitz, <VJ(uk+1) VJ(ur),d*) < rFpl|d¥||>.  Altogether we have 7% >

(c2—1) (VI (ub),d*) b e1(1—e2)|[(VI(uk),d")|?
plld* |2 pld*[2 )

. Using the Armijo condition, we have J(uft1) < J(u

. . . o |[(VI(uF)d*)|?
Summing up this inequality from k£ = 0 to oo, we have ) ;" SaEE s < O

Lemma 2.4. Assume that J : & — R is u-Lipschitz differentiable. Then Yu,v € E :

[7(v) = T (w) = (VI (), 0 — u) | < S v —ul®

Proof. Since J(v) = J(u) fo (VJ(u+tlv—u)),v—u)dt =J(u) + (VJ(u),v — u)
—|—f0 (VJ(u+tv—u)) —VJ(u),v —u)dt, we have |J(v) — J(u) — (VJ(u),v — u) |
(fo VI (u+ tv —u)) — VI (u),v — u) dt‘ < LV (u+ Ho — w) = VT (u),v — u) |dt
< Jo IVT(u+t(v =) = VI@)|lv = ulldt < [y tullo - ul?dt = §lv - ul|. O
Theorem 2.5 (convergence of gradient descent). Assume that J : E — R is p-Lipschitz dif-

ferentiable. Then the gradient descent iteration u*+1 = u¥ — 7V.J(uF) with 7 € (0,1/p] yields
limy, oo VJ(u*) = 0.

Proof. First, note that J(u**') < J(u¥F) Vk. Since J has finite infimum by assumption,

limy_ o0 |[J(uFt1) — J(u¥)| = 0. Due to the majorization property and p < 1/7, we have
J(uFt) < J(Wk) + <VJ(uk),uk+1 — uk> + %HukJrl — k|2 = J(ub) - %HukJrl — uF||2. Hence,
we conclude [|VJ(uP)|| = L[|uk+! — u¥|| — 0. O



Proposition 2.6. Let C be a nonempty, closed, convex subset of E, ® : C' — E, and a € (0,1).
Then the following statements are equivalent:

1. ® is a-averaged.

2. (1 -1+ 1@ is nonezpansive.

5. Vv € C - B(u) — B()|P < [lu— o> — =2 (T - ®)(w) — (T — &)(0)]°

4. Yu,v € C: [|®(u) — @(v)||? + (1 — 2a)||u — v||? < 2(1 — a) (u — v, ®(u) — ®(v)).

Proof. By the definition of the averaged operator, ® = (1 — a)] + a¥ for some nonexpansive
operator ¥ : C' - E, or ¥ = (1 — 1)I' + 1&. Hence, (1) < (2) follows.

(2) © ¥ = (1— )7+ 1 is nonexpansive < || ¥ (u) — ¥ (v)|| < [lu—v| < o?lu—v|? > ||((a—
Do)~ (e1ftrafl D)2 = [0(1)—0(0) |2+ (a— 1) Ju—v|>+2(a—1) (u — v, &(u) - B(v))
= .

Note that 2 (u — v, ®(u) — ®(v)) = (I = ®)(u) — (I = @)(v)|* = [u — v|]* = [|®(u) — P(v)]|*.
Hence, (4) & [[®(u) — @(0)|]* + (1 = 2a)u — o[> < (1 = )[|(I = @)(u) — (I = @)(v)[* = (1 -
a)fu—v[? = (1 = a)]|@(w) — 2(v)[* « (3). O

Theorem 2.7 (Baillon-Haddad). Let J : E — R be a convex, continuously differentiable func-
tion. Then VJ is a nonexpansive operator iff VJ is firmly nonexpansive.

Proof. (if) Obvious.

(only if) Define H(-) := 3| - ||> — J(-). Note that H is continuously differentiable and
VH =1 —VJ. Since VJ is nonexpansive, we have Yu,v : (VH(v) — VH(u),v —u) > |jv —
=~ 190 =9I > .

This implies Vu, v : H(v) fo (VH(u+t(v —u)),v — u)dt > fol (VH(u),v —u)dt =
(VH(u),v — u). Furthermore, H( ) > H(u)+(VH(u),v —u) = 3||v||> = J(v) > $||ul|?—J(u)+
(= VT, 0~ u) = J(0) — I(a) — (VI @)v — 0} < Sl = }ulP + (uyw — v) = 3o — ]

Define Dj(w,u) := J(w) — J(u) — (VJ(u),w — u),Vw,u € E. The above result says 1|jw —
ul|? > Dj(w,u),Yw,u. Fix u temporarily and let d(-) = Dj(-,u). Then d is convex, d(-) > 0,
Vd(:) = VJ(-) — VJ(u), and D;(-,u) = Dg(-,u). Therefore, we have |w — v|*> > Dg(w,v) =
d(w)—d(v)—(Vd(v),w — v) = d(w)—d(v)—(VJ(v) = VJ(u),w —v).Set w = v—VJ(v)+VJ(u),
then we have D;(v,u) = d(v) > d(w) + 5|V J(v) — VJ(W)[|> > VI (v) — VJ(u)|%

Analogously, we can show D (u,v) > 3[|VJ(u)—VJ(v)||>. Hence, (VJ(v) — VJ(u),v — u) =
Dy(u,v) + Dy(v,u) > ||VJ(v) — VJ(u)|?. Hence, V.J is firmly nonexpansive by Proposition
O

Corollary 2.8. Assume G : E — R is convex and p-Lipschitz differentiable, and 7 = 2a/pn with
€ (0,1). Then I — VG is a-averaged.

Proof. Since iVG is nonexpansive, by the Baillon-Haddad theorem, iVG is firmly nonexpan-
sive, i.e. 3¥ : E — [E nonexpansive s.t. ﬁVG =1I+1V. Hence, | —7VG = (1 - )] - T£0 =
(I —a)l+a(—¥),ie I —7VG is a-averaged. O

Theorem 2.9 (composition of averaged operators). Let C' be a nonempty, closed, convex subset
of E. For each i € {1,...,m}, let a; € (0,1) and ®; : C — C be an a;-averaged operator. Then

d=0,,0...00;



18 a-averaged with

B m
@ = 1
m-l4—
maxi<i<m O
Proof. Let k; := «;/(1 — ;) for each i, and k := max; k;. For arbitrarily fixed u,v € C, we
derive

(I = @)(u) — (I — ®)(v)[|*/m
=[[(I = @1)(u) = (I = @1)(v) + [({ — @2) 0 P1](u) — [({ — P2) 0 P1](v) +
+ (I =®p) 0Pt 0...00|(u) = [(I — @) 0 Py 0... 0 B1)](v)]|?/m

<1 = @1) () — (I = @1)(0)[|* + [[(I = ®2) 0 P1](u) — [(1 — P2) 0 ®1](v)|1* +

+ [[(T = @) © P10 ... 0 B1] (1) — [(I — Ppp) 0 Ppy_q 0 ... 0 )] () ]|?
<k1(flu—v]]* = [[@1(u) = @1(0)[1?) + ra([|P1(w) = P1(v)|]* = |[[P2 0 D1 (u) — [P2 0 P1](v)]?)

+ o+ ([P 0o 0 P1] (1) = [@pp_1 0 ... 0 D1](0)]|2 = ||[ @ © ... 0 D] (1) — [Py © ... 0 By](w)]|?
<R[l — o] = [|®(u) — D(0)|1?).

Since (1) < (3) in Proposition ® is a-averaged with lea = L or equivalently o =

mk’

m
m+1/k"
Theorem 2.10 (Krasnoselskii). Let C' be a nonempty, closed, convex subset of E, and uF*! =

d(uF) for k =0,1,2,... where ® : C — C satisfies:
1. @ is a-averaged for some o € (0,1).
2. ® has at least one fixed point.

Then {uF} converges to a fized point of ®.

Proof. Let u € C be an arbitrary fixed point of ®. Since ® is a-averaged, we have Vk :
[uh = al? = [|@(u’) — @(a)]|* < [lu* —al? — I - @)(uh) — (I - ) (@)|* = [[u* —al* —
1=2||(] — ®)(u*)||?. Summing up this inequality for all indices in I € [0, k], we have

k

_ _ 1—a
[ —al* < lu® —al® - - DO = @)(uh]*.

=0

This yields: (i) [|u® —all \o ¢ > 05 (i) 3232, (7 — &) II? < oo

By (i), {uk} is umformly bounded. Let {u¥'} be any convergent subsequence of {uk}
s.t. limp o uf = u* € C. By (ii), ||(I — ®)(u*)|| = limp_o |(I — ®)(uF)]| = 0, ie. u* is
a fixed point of ®.

Finally, we show the limit «* is unique for any convergent subsequence of {u*}. Assume that
another subsequence of {u*}, say {u*"}, converges to u** € C. Then both limy_,e ||u* — u*||?
and limy_,o [[u? — w**||? exist, and therefore 2 (uF,u** —u*) = [Ju¥ — w*||? — [Juf — w**|? —
lu*||? + [|[u**||* = ¢ € R. Passing k — oo along subindices {k’} and {k"} respectively, we have
2 (u*, u** — u*) = 2 (u*, u** —u*) = ¢ and hence ||u* — u**||> = 0. Thus, we have shown that

limy_y oo ¥ = u*. O



Theorem 2.11 (Krasnoselskii-Mann). Let C' be a nonempty, closed, convexr subset of E, and
uF = (1 — 79k + 770 (uk) for k =0,1,2,... where {T%} C [0,1] s.t.

o0
ZTk(l — %) = o0,
k=0

and ¥ : C' — C satisfies:
1. ¥ is nonexpansive.
2. U has at least one fized point.
Then {u*} converges to a fized point of V.

Proof. Let 4 € C be an arbitrary fixed point of ¥. Then Vk : |[ufT! —a|? = ||(1 — 7F)(u* —
) + THR) — )2 = (1— 7Pk — al? + 7R ) — al = (L — )W) - FP <
||u’C —al|? - Tk(l — Tk)||\11(uk) — u’“||2 Summing up this inequality for all indices in I € [0, k], we
have

k
[ =) <l —al® = =) - )P
=0

This yields: (i) [lu® — al| Ny ¢ > 0; (i) 5oy 78 (1 — 7%)[|(I — ¥) (u¥)||? < oo.

(ii) further implies lim infy_,o ||(I — ¥)(u¥)|| = 0. Otherwise 3k € N, € > 0, s.t. Vk > k :
I = W)W = €, and hence 00 > S50 T(1 — P — W)(h) 2 = 352, 741 — 7)(T -
) (ub)]|2 > e27%(1—7") = oo yields a contradiction. Moreover, ||(I—¥)(u**1)|| = ||(1—7F)(u* -
W (b)) + (D (h) = B ()] (1= )b — 0 ()| + [+ — | = || (T— @) (k). Altogether,
we obtain limy_,o ||(I — ¥)(u*)|| = 0.

The remainder of the proof is identical to that for Theorem [2.10 O

Lemma 2.12 (demiclosedness principle). Let C' be a nonempty, closed, convex subset of a real
Hilbert space H, and ® : C — H be nonexpansive. For any sequence {uf} C C s.t. {uF} weakly
converges to u(€ C) and uF — ®(u”) strongly converges to v € H, we have u — ®(u) = v.

Proof. Since {uF} weakly converges to u* and C is weakly closed (for being convex and strongly
closed), we have u € C' and ®(u) is well defined. By the nonexpansiveness of ®, we derive

Ju = @(u) = o = lu* = @(u) = v]2 = ut =l = 2 (uF ~ w,u— D(u) — v)
= [l = @(uF) = v]]2 + 2 (uF - D(u¥) = v, @(uk) — B(w)) + [D(F) = Dw)|? ~ [t ]}
- 2<uk —u,u— P(u) —v>

< |luk — ® (k) —o||? + 2 <uk ~ (k) — v, d(uF) — <I>(u)> —9 <uk —uyu— Bu) — u> 0.

Note that, in the last inequality above, ®(u¥) — ®(u) = (®(u¥) —uF +v) + (¥ — ®(u) —v) weakly
converges to u — ®(u) — v. O
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