Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu

Exercises: Emanuel Laude, Zhenzhang Ye

Summer Semester 2018

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 1

Room: 02.09.023

Wednesday, 25.04.2018, 12:15-14:00

Submission deadline: Monday, 23.04.2018, 16:15, Room 02.09.023

Theory: Convex Sets

(12+8 Points)

Exercise 1 (4 Points). Let \mathcal{C} be a family of convex sets in \mathbb{R}^n , $C_1, C_2 \in \mathcal{C}$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $\lambda \in \mathbb{R}$. Prove convexity of the following sets:

- $\bigcap_{C \in \mathcal{C}} C$
- $P := \{ x \in \mathbb{R}^n : Ax \le b \}$
- $C_1 + C_2 := \{x + y : x \in C_1, y \in C_2\}$ (the Minkowski sum of C_1 and C_2)
- $\lambda C_1 := \{\lambda x : x \in C_1\}$ (the λ -dilatation of C_1).

Exercise 2 (4 Points). Let $\emptyset \neq X \subset \mathbb{R}^n$. Prove the equivalence of the following statements:

- X is closed.
- Every convergent sequence $\{x_n\}_{n\in\mathbb{N}}\subset X$ attains its limit in X.

Exercise 3 (4 Points). Prove that if the set $C \subset \mathbb{R}^n$ is convex, then $\sum_{i=1}^N \lambda_i x_i \in C$ with $x_1, x_2, \ldots, x_N \in C$ and $0 \le \lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}$, $\sum_{i=1}^N \lambda_i = 1$.

Hint: Use induction to prove.

Definition (Convex Hull). The convex hull conv(S) of a finite set of points $S \subset \mathbb{R}^n$ is defined as

$$conv(S) := \left\{ \sum_{i=1}^{|S|} a_i x_i : x_i \in S, \sum_{i=1}^{|S|} a_i = 1, a_i \ge 0 \right\}$$

Exercise 4 (8 Points). Prove the following statement: Let $n \in \mathbb{N}$ and let $A \subset \mathbb{R}^n$ contain n+2 elements: |A| = n+2. Then there exists a partition of A into two disjoint sets A_1, A_2

$$A = A_1 \dot{\cup} A_2,$$

(meaning that $A_1 \cap A_2 = \emptyset$) so that the convex hulls of A_1 and A_2 intersect:

$$\operatorname{conv}(A_1) \cap \operatorname{conv}(A_2) \neq \emptyset.$$

You may use the following hint. Don't forget to prove the hint!

Hint: Let $x_1, \ldots, x_{n+2} \in \mathbb{R}^n$. Then the set $\{x_1 - x_{n+2}, \ldots, x_{n+1} - x_{n+2}\}$ is linearly dependent and there exist multipliers a_1, \ldots, a_{n+2} , not all of which are zero, so that

$$\sum_{i=1}^{n+2} a_i x_i = 0, \quad \sum_{i=1}^{n+2} a_i = 0.$$

The desired partition is formed via all points corresponding with $a_i \geq 0$ and all points with $a_i < 0$.