Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu
Exercises: Emanuel Laude, Zhenzhang Ye
Summer Semester 2018

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 2

Room: 02.09.023
Wednesday, 02.05.2018, 12:15-14:00
Submission deadline: Monday, 30.04.2018, 16:15, Room 02.09.023

Convex sets and functions

(12 Points +4 Bonus)
Exercise 1 (4 Points). Let $J: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ be proper. Prove the equivalence of the following statements:

- J is convex.
- epi $(J):=\left\{\binom{u}{\alpha} \in \mathbb{E} \times \mathbb{R}: J(u) \leq \alpha\right\}$ is convex.

Exercise 2 (4 Points). Show that the following functions $J: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ are convex:

- $J(u)=\|u\|$, for any norm $\|\cdot\|$ over a normed vector space.
- $J(u)=F(K u)$, for convex $F: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ and linear $K: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
- (Jensen's inequality) J is convex iff

$$
J\left(\sum_{i=1}^{n} \alpha_{i} u^{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} J\left(u^{i}\right)
$$

whenever $\left\{u^{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{n},\left\{\alpha_{i}\right\}_{i=1}^{n} \subset[0,1], \sum_{i=1}^{n} \alpha_{i}=1$.
Exercise 3 (4 Points). Let $U \subset \mathbb{E}$ open and convex and let $J: U \rightarrow \mathbb{R}$ be twice continuously differentiable. Prove the equivalence of the following statements:

- J is convex.
- For all $u \in U$ the Hessian $\nabla^{2} J(u)$ is positive semidefinite $\left(\forall v \in \mathbb{E}: v^{\top} \nabla^{2} J(u) v \geq\right.$ $0)$.

Hints: You can use that for $u, v \in U$ it holds that J is convex iff

$$
(v-u)^{\top} \nabla J(u) \leq J(v)-J(u)
$$

Further recall that there are two variants of the Taylor expansion:

$$
J(u+t d)=J(u)+t d^{\top} \nabla J(u)+\frac{t^{2}}{2} d^{\top} \nabla^{2} J(u) d+o\left(t^{2}\right)
$$

with $\lim _{t \rightarrow 0} \frac{o\left(t^{2}\right)}{t^{2}}=0$ and

$$
J(u+d)=J(u)+d^{\top} \nabla J(u)+\frac{1}{2} d^{\top} \nabla^{2} J(u+t d) d
$$

for appropriate $t \in(0,1)$.
Exercise 4 (4 points). Prove the following statement using induction over m : Let $K_{1}, \ldots, K_{m} \subset \mathbb{R}^{n}, m \geq n+1$, be convex, such that for all $\mathcal{I} \subset\{1, \ldots, m\}$ with $|\mathcal{I}|=n+1$ it holds that $\bigcap_{i \in \mathcal{I}} K_{i} \neq \emptyset$. Then $\bigcap_{i=1}^{m} K_{i} \neq \emptyset$.

Hint: Use exercise 4 from the first exercise sheet.

Programming: Inpainting(Due date: 07.05) (12 Points)

Exercise 5 (12 Points). Write a MATLAB program that solves the inpainting problem for the vegetable image:

$$
\min _{u \in \mathbb{R}^{n \times m}} \sum_{i, j}\left(u_{i, j}-u_{i-1, j}\right)^{2}+\left(u_{i, j}-u_{i, j-1}\right)^{2} \quad \text { s.t. } u_{i, j}=f_{i, j} \forall(i, j) \in I,
$$

with index set I of pixels to keep. Those can be identified as the white pixels of the mask image.
Hint: The constrained optimization problem can be reformulated so that it becomes unconstrained: Rewrite the objective as a least squares problem in terms of the unknown intensities $u_{i, j},(i, j) \notin I$ using sparse linear operators: Find linear operators X, Y s.t. u can be decomposed as

$$
u=X \tilde{u}+Y f
$$

where \tilde{u} contains only the unknown intensities. Optimize for \tilde{u} instead of u. You may use MATALBs mldivide.

